Advertisement

Tripartite entanglement dynamics for mixed states in the Tavis-Cummings model with intrinsic decoherence

  • Xi-Wen HouEmail author
  • Ming-Fang Wan
  • Zhong-Qi Ma
Regular Article

Abstract

Tripartite entanglement dynamics is studied in terms of a generalized negativity for two kinds of mixed states in the Tavis-Cummings model with intrinsic decoherence, where the arithmetic and geometric mean negativities, which have been widely used to three qubits in recent literature, are included for consistency and comparison. Analytical and numerical simulations for various states in the model without and with intrinsic decoherence as well as without rotating-wave approximation show that the dynamical correlations between those negativities are dominantly positive when the field is initially prepared in the states with more than two photons. Such correlation between the arithmetic and geometric mean negativities is positive for a suitable state. The dependence of the steady-state entanglement on initial conditions demonstrates that the generalized negativity and the arithmetic mean negativity behave in a similar way. Moreover, a hierarchy of those indicators in entanglement dynamics and the steady-state entanglement is the same for various parameters in the model and initial states. Those are useful for tripartite entanglement and quantum information.

Keywords

Quantum Optics 

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000)Google Scholar
  2. 2.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Walborn et al., Nature 440, 1022 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1998)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    P.S.Y. Poon, C.K. Law, Phys. Rev. A 76, 054305 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Ryu, W. Cai, A. Caro, Phys. Rev. A 77, 052312 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Yu, K.H. Ma, H.S. Song, Eur. Phys. J. D 56, 431 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K.H. Ma, C.S. Yu, H.S. Song, Eur. Phys. J. D 59, 317 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Miranowicz, S. Ishizaka, Phys. Rev. A 78, 032310 (2008)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    X.W. Hou, J.H. Chen, M.F. Wan, Z.Q. Ma, Eur. Phys. J. D 49, 37 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    X.W. Hou, M.F. Wan, Z.Q. Ma, Phys. Rev. A 79, 022308 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X.W. Hou, M.F. Wan, Z.Q. Ma, J. Phys. A 43, 205301 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    X.W. Hou, M.F. Wan, Z.Q. Ma, Eur. Phys. J. D 62, 279 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H.T. Lim et al., Phys. Rev. Lett. 107, 160401 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Hayashi et al., Phys. Rev. Lett. 96, 040501 (2006)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C.W. Zhang, C.F. Li, Z.Y. Wang, G.C. Guo, Phys. Rev. A 62, 042302 (2000)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Groblacher et al., New J. Phys. 8, 75 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    A. Wong, N. Christensen, Phys. Rev. A 63, 044301 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    P. Facchi et al., J. Phys. A 42, 055304 (2009)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    M. Wiesiak, V. Vedral, C. Brukner, New J. Phys. 7, 258 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    L. Chen, Y.X. Chen, Phys. Rev. A 76, 022330 (2007)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    J. León, C. Sabín, Phys. Rev. A 79, 012301 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    F. Casagrande, A. Lulli, M.G.A. Paris, Phys. Rev. A 79, 022307 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    J.H. Huang, L.G. Wang, S.Y. Zhu, Phys. Rev. A 81, 064304 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    B. Militello, A. Messina, Phys. Rev. A 83, 042305 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    O. Gühne, M. Seevinck, New J. Phys. 12, 053002 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Szalay, Phys. Rev. A 83, 062337 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Y.K. Bai, D. Yang, Z.D. Wang, Phys. Rev. A 76, 022336 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Y.C. Ou, H. Fan, Phys. Rev. A 75, 062308 (2007)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    A. Borras et al., Phys. Rev. A 79, 022108 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Hwang, D.K. Park, E. Jung, Phys. Rev. A 83, 012111 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    C. Sabin, G. Garcia-Alcaine, Eur. Phys. J. D 48, 435 (2008)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    F. Anzá, B. Militello, A. Messina, J. Phys. B 43, 205501 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    D.S. Oliveira, R.V. Ramos, Quant. Inf. Process. 9, 497 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    F. Buscemi, P. Bordone, Phys. Rev. A 84, 022303 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    X.H. Gao, S.M. Fei, K. Wu, Phys. Rev. A 74, R050303 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    S. Virmani, M.B. Plenio, Phys. Lett. A 268, 31 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    M. Ziman, V. Buzek, Phys. Rev. A 73, 012312 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968)ADSCrossRefGoogle Scholar
  45. 45.
    J. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    M.S. Kim, J. Lee, D. Ahn, P.L. Knight, Phys. Rev. A 65, R040101 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    J.L. Guo, H.S. Song, J. Phys. A 41, 085302 (2008)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    L. Chotorlishvili, P. Schwab, Z. Toklikishvili, V. Skrinnikov, Phys. Lett. A 374, 1642 (2010)ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    G.F. Zhang, X.C. Xie, Eur. Phys. J. D 60, 423 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    T.E. Tessier, I.H. Deutsch, A. Delgado, I. Fuentes-Guridi, Phys. Rev. A 68, 062316 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    C.E.A. Jarvis et al., New. J. Phys. 11, 103047 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    K. Źyczkowski, P. Horodecki, M. Horodecki, R. Horodecki, Phys. Rev. A 65, 012101 (2001)CrossRefGoogle Scholar
  54. 54.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    H. Moya-Cessa, V. Bužek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    L.M. Kuang, X. Chen, M.L. Ge, Phys. Rev. A 56, 3139 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    M.B. Plenio, P.L. Knight, Proc. R. Soc. A 453, 157 (1997)CrossRefGoogle Scholar
  59. 59.
    V. Bužek, M. Konopka, Phys. Rev. A 58, 1735 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    K. Kimm, Hwang-h. Kwon, Phys. Rev. A 65, 022311 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    B.Q. Liu, B. Shao, J. Zou, Phys. Lett. A 374, 1970 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. 62.
    S.S. Sharma, N.K. Sharma, J. Opt. B: Quantum Semiclass. 7, 230 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    Q.L. He, J.B. Xu, Opt. Commun. 284, 3649 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    J.L. Guo, H.S. Song, Physica A 388, 2254 (2009)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    K. Chen, L.A. Wu, Phys. Lett. A 306, 14 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  66. 66.
    M. Siomau, S. Fritzsche, Eur. Phys. J. D 60, 397 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    M. Siomau, S. Fritzsche, Phys. Rev. A 82, 062327 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Y.S. Weinstein, Phys. Rev. A 82, 032326 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    N.B. An, J. Kim, K. Kim, Phys. Rev. A 84, 022329 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    M. Li, S.M. Fei, Z.X. Wang, J. Phys. A 42, 145303 (2009)MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    D. Monteoliva, J.P. Paz, Phys. Rev. Lett. 85, 3373 (2000)ADSCrossRefGoogle Scholar
  73. 73.
    J. Gong, P. Brumer, Phys. Rev. A 68, 022101 (2003)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    X. Wang, S. Ghose, B.C. Sanders, B. Hu, Phys. Rev. E 70, 016217 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    X.W. Hou, B. Hu, Phys. Rev. A 69, 042110 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    K. Chen, S. Albeverio, S.M. Fei, Phys. Rev. Lett. 95, 040504 (2005)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    X.J. Ren, Z.W. Zhou, X. Zhou, G.C. Guo, Phys. Rev. A 77, 054302 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  79. 79.
    J. Casanova et al., Phys. Rev. Lett. 105, 263603 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    D. Girolami, M. Paternostro, G. Adesso, J. Phys. A 44, 352002 (2011)CrossRefGoogle Scholar
  81. 81.
    X.W. Hou, J. Huang, M.F. Wan, Phys. Rev. A 85, 044501 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    F. Mintert, M. Kuś, A. Buchleitner, Phys. Rev. Lett. 95, 260502 (2005)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsHuazhong Normal UniversityWuhanP.R. China
  2. 2.School of Natural ScienceWuhan University of TechnologyWuhanP.R. China
  3. 3.Institute of High Energy PhysicsBeijingP.R. China

Personalised recommendations