Advertisement

Molecular structure conversion of fluorescein monoanions in an electrostatic storage ring

  • T. TanabeEmail author
  • M. Saito
  • K. Noda
  • E.B. Starikov
Regular Article

Abstract

The photodissociation of fluorescein monoanions was studied by varying the storage times of the ions in an ion trap and an electrostatic storage ring, before laser irradiation. The photodissociation neutral spectra as a function of time vary, in a manner dependent on the storage time as well as the laser wavelength; spectra consist of components with short and long lifetimes. By comparing the wavelength spectra of fluorescein obtained herein with absorption spectra reported recently for the solution and gas phases, it was deduced that the spectra originated from various tautomers of fluorescein monoanions. Moreover, interconversion of these tautomers occurs during long-term storage in the storage ring in vacuo. The wavelength spectra of the converted ions depend strongly on the storage time in the ring. In addition, we have also performed detailed semiempirical quantum-chemical computations, to try revealing what kind of monoanion tautomers we are dealing with.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    M.M. Martin, Chem. Phys. Lett. 35, 105 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    R. Sjöback, J. Nygren, M. Kubista, Spectrochim. Acta A 51, L7 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kubista, R. Sjöback, J. Nygren, Anal. Chim. Acta 302, 121 (1995)CrossRefGoogle Scholar
  4. 4.
    N. Klonis, W.H. Sawyer, J. Fluoresc. 6, 147 (1996)CrossRefGoogle Scholar
  5. 5.
    N. Klonis, W.H. Sawyer, Photochem. Photobiol. 72, 179 (2000)CrossRefGoogle Scholar
  6. 6.
    L. Wang, A. Roitberg, C. Meuse, A.K. Gaigalas, Spectrochim. Acta A 57, 1781 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Y.H. Jang, S. Hwang, D.S. Chung, Chem. Lett. 30, 1316 (2001)CrossRefGoogle Scholar
  8. 8.
    A. Tamulis, J. Tamuliene, M.L. Balevicius, Z. Rinkevicius, V. Tamulis, Struct. Chem. 14, 643 (2003)CrossRefGoogle Scholar
  9. 9.
    N.O. Mchedlov-Peyrossyan, V.V. Ivanov, Russ. J. Phys. Chem. A 81, 112 (2007)CrossRefGoogle Scholar
  10. 10.
    V.R. Batistela, J.C. Cedran, H.P.M. Oliveira, I.S. Scarminio, L.T. Ueno, A.E.H. Machado, N. Hioka, Dyes Pigm. 86, 15 (2010)CrossRefGoogle Scholar
  11. 11.
    N.O. Mchedlov-Petrossyan, N.A. Vodolazkaya, N.V. Salamanova, A.D. Roshal, D.Y. Filatov, Chem. Lett. 39, 30 (2010)CrossRefGoogle Scholar
  12. 12.
    P.D. McQueen, S. Sagoo, H. Yao, R.A. Jockusch, Angew. Chem. Int. Ed. 49, 9193 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Yao, J.D. Steill, J. Oomens, R.A. Jockusch, J. Phys. Chem. A 115, 9739 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Tanabe, M. Saito, K. Noda, Eur. Phys. J. D 62, 191 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 11th edn. (Molecular Probes, Inc., Eugene, 2010)Google Scholar
  16. 16.
    T. Tanabe, K. Chida, K. Noda, I. Watanabe, Nucl. Instrum. Meth. A 482, 595 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    T. Tanabe, K. Noda, Nucl. Instrum. Meth. A 496, 233 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    J.J.P. Stewart, J. Mol. Model. 10, 155 (2004)CrossRefGoogle Scholar
  19. 19.
    M.C. Zerner, in Reviews in Computational Chemistry II, edited by K.B. Libkowitz, D.B. Boyd (VCS Publishers Inc., 1991), Chap. 8, pp. 313–366Google Scholar
  20. 20.
    M.A. Thompson, J. Phys. Chem. 100, 14492 (1996)CrossRefGoogle Scholar
  21. 21.
    T. Tanabe, M. Saito, K. Noda, in Proceedings of the XXVII International Conference of Photonic, Electronic and Atomic Collisions, ICPEAC, Belfast, Northern Ireland, 2011 (abstract Tu122, to be published in J. Phys. Conf. Ser.)Google Scholar
  22. 22.
    Z. Tian, S.R. Kass, J. Am. Chem. Soc. 130, 10842 (2008)CrossRefGoogle Scholar
  23. 23.
    L.H. Andersen, H. Bluhme, S. Boyé, T.J.D. Jørgensen, H. Krogh, I.B. Nielsen, S.B. Nielsen, A. Svendsen, Phys. Chem. Chem. Phys. 6, 2617 (2004)CrossRefGoogle Scholar
  24. 24.
    W.M.F. Fabian, S. Schuppler, O.S. Wolfbeis, J. Chem. Soc. Perkin Trans. 2, 853 (1996)Google Scholar
  25. 25.
    T. Ueno, Y. Urano, K. Setsukinai, H. Takakusa, H. Kojima, K. Kikuchi, K. Ohkubo, S. Fukuzumi, T. Nagano, J. Am. Chem. Soc. 126, 14079 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Gu, J. Leszczynski, J. Phys. Chem. A 103, 577 (1999)CrossRefGoogle Scholar
  27. 27.
    J. Gu, J. Leszczynski, J. Phys. Chem. A 103, 2744 (1999)CrossRefGoogle Scholar
  28. 28.
    J.M. Lopez del Amo, U. Langer, V. Torres, G. Buntkowsky, H.-M. Vieth, M. Pérez-Torralba, D. Sanz, R.M. Claramunt, J. Elguero, H.-H. Limbach, J. Am. Chem. Soc. 130, 8620 (2008)CrossRefGoogle Scholar
  29. 29.
    E. Pines, in The Chemistry of Phenols, edited by Z. Rappoport (Wiley-VCH, International Edition, 2004) Vol. 1, p. 499Google Scholar
  30. 30.
    D.Z. Wang, A. Streitwieser, Theor. Chem. Acc. 102, 78 (1999)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.National Institute of Radiological Sciences, AnagawaChibaJapan
  3. 3.Kyoto Prefectural UniversityKyotoJapan
  4. 4.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations