Advertisement

Chemical structural effects on γ-ray spectra of positron annihilation in fluorobenzenes

  • F. WangEmail author
  • X. G. Ma
  • L. Selvam
  • G. F. Gribakin
  • C. M. Surko
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron/Positron Collision

Abstract

Spectra of γ-ray Doppler shifts for positron annihilation in benzene and its fluoro-derivatives are simulated using low energy plane wave positron (LEPWP) approximation. The results are compared with available measurements. It is found that the Doppler shifts in these larger aromatic compounds are dominated by the contributions of the valence electrons and that the LEPWP model overestimates the measurements by approximately 30%, in agreement with previous findings in noble gases and small molecules. It is further revealed that the halogen atoms not only switch the sign of the charges on carbon atoms that they bond to, but that they also polarize other C-H bonds in the molecule leading to a redistribution of the molecular electrostatic potentials. As a result, it is likely that the halogen atoms contribute more significantly to the annihilation process. The present study also suggests that, while the Doppler shifts are sensitive to the number of valence electrons in the molecules, they are less sensitive to the chemical structures of isomers that have the same numbers and type of atoms and, hence, the same numbers of electrons. Further investigation of this effect is warranted.

Keywords

Topical issue: Electron/Positron Collision. Guest editors: Michael Brunger, Anne Lafosse, Gaetana Laricchia, Paulo Limao-Vieira and Nigel Mason 

Supplementary material

10053_2012_207_MOESM1_ESM.pdf (199 kb)
Supplementary material, approximately 198 KB.

References

  1. 1.
    G.F. Gribakin, J.A. Young, C.M. Surko, Rev. Mod. Phys. 82, 2557 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    F. Wang, L. Selvam, G.F. Gribakin, C.M. Surko, J. Phys. B 43, 165207 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    K. Iwata, R.G. Greaves, C.M. Surko, Phys. Rev. A 55, 3586 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    K. Iwata, G.F. Gribakin, R.G. Greaves, C. Kurz, C.M. Surko, Phys. Rev. A 61, 227191 (2000)CrossRefGoogle Scholar
  5. 5.
    S. Tang, M.D. Tinkle, R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 68, 3793 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    P.E. Osman, Phys. Rev. A 140, 8 (1965)ADSGoogle Scholar
  7. 7.
    D.M. Schrader, C.M. Wang, J. Phys. Chem. 80, 2507 (1976)CrossRefGoogle Scholar
  8. 8.
    G.L. Glish, R.G. Greaves, S.A. McLuckey, L.D. Hulett, C.M. Surko, J. Xu, D.L. Donohue, Phys. Rev. A 49, 2389 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    K. Iwata, G.F. Gribakin, R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 79, 39 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Green, S. Saha, F. Wang, G.F. Gribakin, C.M. Surko, Mat. Sci. Forum 666, 21 (2011)CrossRefGoogle Scholar
  11. 11.
    L.J.M. Dunlop, G.F. Gribakin, J. Phys. B 39, 1647 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L.D. Barnes, S.J. Gilbert, C.M. Surko, Phys. Rev. A 67, 032706 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 119, 5005 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Hagmann, J. Med. Chem. 51, 4359 (2008)CrossRefGoogle Scholar
  16. 16.
    S.K. Khetan, T.J. Collins, Chem. Rev. 107, 2319 (2007)CrossRefGoogle Scholar
  17. 17.
    G.A. Patani, E.J. Lavoie, Chem. Rev. 96, 3147 (1996)CrossRefGoogle Scholar
  18. 18.
    F.M.D. Ismail, J. Fluorine Chem. 118, 27 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Leist, J. Frey, P. Ottiger, H.M. Leutwyler, S. Bachorz, W. Klopper, Angew. Chem. Int. Ed. 46, 7449 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Parsch, J.W. Engels, Nucleos. Nucleot. Nucl. Acids 20, 815 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Parsch, J.W. Engels, J. Am. Chem. Soc. 124, 5664 (2002)CrossRefGoogle Scholar
  22. 22.
    Y. Benitex, A.M. Baranger, J. Am. Chem. Soc. 133, 3687 (2011)CrossRefGoogle Scholar
  23. 23.
    D.G. Green, S. Saha, F. Wang, G.F. Gribakin, C.M. Surko, submitted to New J. Phys.Google Scholar
  24. 24.
    J.A. Young, C.M. Surko, Phys. Rev. A 77, 052704 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70, 560 (1992)CrossRefGoogle Scholar
  26. 26.
    F. Wang, J. Phys. Chem. A 107, 10199 (2003)CrossRefGoogle Scholar
  27. 27.
    F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977)CrossRefGoogle Scholar
  28. 28.
    P. Ayers, Theor. Chem. Acc. 115, 370 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Arulmozhiraja, P. Kolandaivel, Int. J. Quantum Chem. 64, 231 (1997)CrossRefGoogle Scholar
  30. 30.
    F.L. Hirshfeld, S. Rzotkiewicz, Mol. Phys. 27, 1319 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    H.A. Jahn, E. Teller, Proc. Roy. Soc. Lond. Ser. A 161, 220 (1937)ADSCrossRefGoogle Scholar
  32. 32.
    F. Wang, M. Downton, N. Kidwani, J. Theor. Comp. Chem. 4, 247 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Ganesan, F. Wang, C. Falzon, J. Comp. Chem. 32, 525 (2011)CrossRefGoogle Scholar
  34. 34.
    P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R. van Hommes, J. Am. Chem. Soc. 118, 6317 (1996)CrossRefGoogle Scholar
  35. 35.
    T.X. Carroll, T.D. Thomas, H. Bergersen, K.J. Borve, J. Org. Chem. 71, 1961 (2006)CrossRefGoogle Scholar
  36. 36.
    T. Okazaki, K.K. Laali, Org. Biomol. Chem. 4, 3085 (2006)CrossRefGoogle Scholar
  37. 37.
    J.I. Wu, F.G. Puhlhofer, P.V.R. Puchta, R. Kiran, M. Mauksch, N.J.R.V.E. Hommes, I. Alkorta, J. Elguero, J. Phys. Chem. A 113, 6789 (2009)CrossRefGoogle Scholar
  38. 38.
    S. Noorizadeh, M. Dardab, Chem. Phys. Lett. 493, 376 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • F. Wang
    • 1
    Email author
  • X. G. Ma
    • 1
    • 2
  • L. Selvam
    • 1
  • G. F. Gribakin
    • 3
  • C. M. Surko
    • 4
  1. 1.eChemistry Laboratory, Faculty of Life and Social SciencesSwinburne University of TechnologyHawthornAustralia
  2. 2.School of PhysicsLudong UniversityYantai, ShandongP.R. China
  3. 3.Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and PhysicsQueen’s University BelfastBelfastNorthern Ireland, UK
  4. 4.Physics DepartmentUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations