Light with orbital angular momentum interacting with trapped ions

  • C.T. SchmiegelowEmail author
  • F. Schmidt-Kaler
Regular Article
Part of the following topical collections:
  1. Topical issue: High Dimensional Quantum Entanglement


We study the interaction of light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the dependencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to optimally observe the specific effects, focusing the angular momentum beam close to the diffraction limit is required. We discuss a protocol for examining experimentally the effects on the S1/2 to D5/2 transition using a 40Ca+ ion. Various applications and advantages are expected when using light carrying angular momentum: in quantum information processing, where qubit states of ion crystals are controlled, parasitic light shifts could be avoided as the ion is excited in the dark zone of the beam at zero electric field amplitude. Such interactions also open the door to high dimensional entanglement between light and matter. In spectroscopy one might access transitions which have escaped excitation so far due to vanishing transition dipole moments.


Topical issue: High Dimensional Quantum Entanglement. Guest editors: Sonja Franke-Arnold, Alessandra Gatti and Nicolas Treps 


  1. 1.
    R. Blatt, D.J. Wineland, Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Friese, J. Enger, H. Rubinsztein-Dunlop, N.R. Heckenberg, Phys. Rev. A 54, 1593 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kulin, S. Aubin, S. Christe, B. Peker, S.L. Rolston, L.A. Orozco, J. Opt. B: Quant. Semiclass. Opt. 3, 353 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D. Rychtarik, B. Engeser, H.C. Nägerl, R. Grimm, Phys. Rev. Lett. 92, 173003 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 97, 170406 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S.W. Hell, M. Kroug, Appl. Phys. B 60, 495 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    V. Klimov, D. Bloch, M. Ducloy, J.R.R. Leite, Opt. Express 17, 9718 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of orbital angular momentum states of photons, arXiv:quant-ph/0104070Google Scholar
  9. 9.
    S. Franke-Arnold, S.M. Barnett, M.J. Padgett, L. Allen, Phys. Rev. A 65, 033823 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1998)Google Scholar
  11. 11.
    D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    A.B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 89, 103001 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, B. Blatt, U. Dorner, Phys. Rev. Lett. 91, 213602 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    J. Eschner, Eur. Phys. J. D 22, 341 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    U. Poschinger, A. Walther, K. Singer, F. Schmidt-Kaler, Phys. Rev. Lett. 105, 263602 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    L. Allen et al., Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    B.E.A. Saleh, M.C. Teich, B.E. Saleh, Fundamentals of Photonics (Wiley Online Library, 1991), Vol. 22Google Scholar
  18. 18.
    J.J. Sakurai, San Fu Tuan, Modern Quantum Mechanics (Addison-Wesley, California, 1985), Vol. 1Google Scholar
  19. 19.
    H.C. Nägerl, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 60, 145 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    G.R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, Nature 414, 49 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    C. Roos, Controlling the Quantum State of Trapped Ions, Ph.D. thesis, Universität Innsbruck, 2000Google Scholar
  22. 22.
    D.F.V. James, Appl. Phys. B 66, 181 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Enk, Quantum Opt. 6, 445 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    A. Picón, J. Mompart, J.R. de Aldana, L. Plaja, G.F. Calvo, L. Roso, Opt. Express 18, 3660 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Kreuter et al., Phys. Rev. A 71, 032504 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    R. Dorn, S. Quabis, G. Leuchs, J. Mod. Opt. 50, 1917 (2003)MathSciNetADSGoogle Scholar
  27. 27.
    P.B. Monteiro, P.A.M. Neto, H.M. Nussenzveig, Phys. Rev. A 79, 033830 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R. Jáuregui, Phys. Rev. A 70, 033415 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    G. Huber, F. Ziesel, U. Poschinger, K. Singer, F. Schmidt-Kaler, Appl. Phys. B 100, 725 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J. Eschner et al., J. Opt. Soc. Am. B 20, 1003 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Wineland, C. Monroe, W.M. Itano, B.E. King, D. Leibfried, D.M. Meekhof, C. Myatt, C. Wood, Experimental Primer on the Trapped Ion Quantum Computer, Quantum Computing (1998), pp. 57–84Google Scholar
  32. 32.
    G. Morigi, I. Cirac, K. Ellinger, P. Zoller, Phys. Rev. A 57, 2909 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    I. Cirac, R. Blatt, P. Zoller, W. Phillips, Phys. Rev. A 46, 2668 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 62, 042305 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    D.G. Grier et al., Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pasko, S.M. Barnett, S. Franke-Arnold, Opt. Express 12, 5448 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    A. Sørensen, K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 3, 463 (2008)CrossRefGoogle Scholar
  39. 39.
    C.F. Roos, New J. Phys. 10, 013002 (2008)CrossRefGoogle Scholar
  40. 40.
    F. Schmidt-Kaler, H. Haeffner, S. Gulde, M. Riebe, G. Lancaster, J. Eschner, C. Becher, R. Blatt, Europhys. Lett. 65, 587 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    G.F. Quinteiro, P.I. Tamborenea, Phys. Rev. B 79, 155450 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    G.F. Quinteiro, A.O. Lucero, P.I. Tamborenea, J. Phys.: Condens. Matter 22, 505802 (2010)CrossRefGoogle Scholar
  44. 44.
    S. Dawkins, D. Mitsch, D. Reitz, E. Vetsch, A. Rauschenbeutel, Phys. Rev. Lett. 107, 243601 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    G. Sagué, E. Vetsch, W. Alt, D. Meschede, A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Louyer, D. Meschede, A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. 48.
    F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Mueller, P. Zoller, W. Li, I. Lesanovsky, New J. Phys. 13, 075014 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de Fisica, FCEyN UBA and IFIBA, ConicetBuenos AiresArgentina
  2. 2.QUANTUM, Institut für Physik, Staudingerweg 7, Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations