Fine-structure splitting calculation in the Ar III ion: comparison of perturbative (Breit-Pauli) and non-perturbative (MCDF-EAL) predictions

  • V. Stancalie
  • V. F. Pais
  • A. Mihailescu
  • Contributors to the EFDA-TF-ITM
Regular Article

Abstract

We have calculated fine structure splitting in the Ar III ion using the R-matrix method. Two independent atomic structure calculations have been performed. Results from the Breit-Pauli – and the Dirac-Atomic – R-matrix relativistic calculations are analysed comparatively. Cross sections and collision strengths are provided for selected weak and intercombination transitions, allowing explicitly for resonance effects. Convergence of the partial wave expansion is ensured by examining the partial collision strengths at collision energies up to 20 Ry. Radiative data are also reported here. We discuss all these results and compare them, when possible. For the allowed transitions, for which the resonance structure is not dominant, the two calculations are nearly identical.

Keywords

Atomic Physics 

References

  1. 1.
    C.P. Balance, D.C. Griffin, J. Phys. B: At. Mol. Opt. Phys. 41, 065201 (2008)CrossRefGoogle Scholar
  2. 2.
    D.C. Griffin, C.P. Ballance, D.M. Mitnik, J.C. Berengut, J. Phys. B: At. Mol. Opt. Phys. 41, 215210 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 41, 175202 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    N.R. Badnell, D.C. Griffin, J. Phys. B: At. Mol. Opt. Phys. 32, 2267 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    G.Y. Lyang, A.D. Whiteford, N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 42, 225002 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    C.T. Johnson, A.E. Kingston, J. Phys. B: At. Mol. Opt. Phys. 23, 3393 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    M.E. Galavis, C. Mendoza, C.J. Zeippen, Astron. Astrophys. Suppl. Ser. 133, 245 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    L.J. Radziemski Jr., V. Kaufman, J. Opt. Soc. Am. 64, 366 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    K.G. Dyall, F.P. Larkins, J. Phys. B: At. Mol. Opt. Phys. 15, 2793 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    A. Burgess, M.C. Chidichimo, J.A. Tully, J. Phys. B: At. Mol. Opt. Phys. 30, 33 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Hummer, K.A. Berrington, W. Eissner, A.K. Pradhan, H.E. Saraph, J.A. Tully, A&A 279, 298 (1993)ADSGoogle Scholar
  12. 12.
    K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput. Phys. Commun. 92, 290 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    N.S. Scott, P.G. Burke, J. Phys. B 13, 4299 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    N.S. Scott, K.T. Taylor, Comput. Phys. Commun. 25, 347 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Ludlow, C.P. Ballance, S.D. Loch, M.S. Pindzola, J. Phys. B: At. Mol. Opt. Phys. 43, 074029 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Munoz Burgos, S.D. Loch, C.P. Ballance, R.F. Boivin, A&A 500, 1253 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Seaton, J. Phys. B: At. Mol. Opt. Phys. 18, 2111 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    P.G. Burke, A. Hibbert, W.D. Robb, J. Phys. B: At. Mol. Opt. Phys. 4, 153 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: an R -matrix Approach (Institute of Physics Publishing, Bristol and Philadelphia, 1993)Google Scholar
  20. 20.
    P.G. Burke, V.M. Burke, K.M. Dunseath, J. Phys. B: At. Mol. Opt. Phys. 27, 5341 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    V.M. Burke, Comput. Phys. Commun. 114, 210 (1998)ADSMATHCrossRefGoogle Scholar
  22. 22.
    E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Chang, J. Phys. B: At. Mol. Phys. 8, 2327 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    P.H. Norrington, I.P. Grant, J. Phys. B: At. Mol. Phys. 20, 4869 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    W.P. Wijesundera, F.A. Parpia, I.P. Grant, P.H. Norrington, F.A. Parpia, J. Phys. B: At. Mol. Opt. Phys. 24, 1803 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    E.B. Saloman, J. Phys. Chem. Ref. Data 39, 033101 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Hibbert, Phys. Scr. T65, 104 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    G.W.F. Drake, J. Phys. B: At. Mol. Phys. 9, L169 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    C. Froese-Fischer, G. Tachiev, A. Irimia, At. Data Nucl. Data Tables 92, 607 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C. Mendoza, C.J. Zeippen, Mon. Not. R. Astr. Soc. 202, 981 (1983)ADSGoogle Scholar
  32. 32.
    V.M. Burke, C.J. Noble, Comput. Phys. Commun. 85, 471 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    P.J.A. Buttle, Phys. Rev. 160, 719 (1967)ADSCrossRefGoogle Scholar
  34. 34.
    H.E. Saraph, Comput. Phys. Commun. 15, 247 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    M. Aymar, Nucl. Instrum. Meth. 110, 211 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    B.C. Fawcett, At. Data Nucl. Data Tables 35, 185 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    E.H. Pinnington, B. Curnutte, M. Dufay, J. Opt. Soc. Am. 61, 978 (1971)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Stancalie
    • 1
  • V. F. Pais
    • 1
  • A. Mihailescu
    • 1
  • Contributors to the EFDA-TF-ITM
  1. 1.Department of LasersNational Institute for Laser, Plasma and Radiation PhysicsMagureleRomania

Personalised recommendations