Multi-band spectral structure and kinetics of the third continua in Ar, Kr and Xe gases excited by a pulsed discharge

  • A. B. TreshchalovEmail author
  • A. A. Lissovski
Regular Article


Time-resolved VUV-UV emission of Ar, Kr, and Xe gases (Rg), excited by a pulsed discharge, have been measured to clarify the origin of the 3rd continua. Several detected continuum bands exhibit very different time behaviors due to various atomic (ionic) precursors and plasma kinetics. Imaging experiments with ns-gated ICCD camera have shown that the 2nd continua (Rg 2 * ) and Rg* lines emit uniformly in the positive column of the discharge. However, the 3rd continua and Rg+* lines were excited exclusively in the negative glow zone, where high-energy electrons are injected from the cathode layer. The multi-band structure of the 3rd continua has been connected with Rg2+ ions produced in the ground and different excited states. These precursors lead to the formation of several bound states Rg 2 2+* , which decay radiatively to the repulsive states (Rg+ + Rg+), where Rg+ ions can be on 2P3/2, 2P1/2 levels due to spin-orbit coupling. The rate constants for the formation of Rg 2 2+ excimers in three-body reaction and two-body collisional quenching of Rg2+∗ ions have been determined from the time behaviors of emission. The quenching of Rg2+∗ ions is explained by the level crossing between bound (Rg2+* + Rg) and repulsive (Rg2+ + Rg) potential curves.


Plasma Physics 


  1. 1.
    T. Griegel, H.W. Drotleff, J.W. Hammer, K. Petkau, J. Chem. Phys. 93, 4581 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    W. Krötz, A. Ulrich, B. Busch, G. Ribitzki, J. Wieser, Phys. Rev. A 43, 6089 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    E. Robert, A. Khacef, C. Cachoncinlle, J.-M. Pouvesle, Opt. Commun. 117, 179 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    A.M. Boichenko, V.F. Tarasenko, E.A. Fomin, S.I. Yakovlenko, Quantum Electron. 23, 3 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    H. Langhoff, Opt. Commun. 68, 31 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    H. Langhoff, J. Phys. B: At. Mol. Opt. Phys. 27, L709 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    J. Wieser, A. Ulrich, A. Fedenev, M. Salvermoser, Opt. Commun. 173, 233 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A.K. Amirov, O.V. Korshunov, V.F. Chinnov, J. Phys. B 27, 1753 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    E. Robert, C. Cachoncinlle, J.-M. Pouvesle, A. Fedenev, V. Tarasenko, J. Wieser, A. Ulrich, Proc. SPIE 4071, 2 (2000)CrossRefGoogle Scholar
  10. 10.
    A.A. Lissovski, A.B. Treshchalov, Phys. Plasma 16, 123501 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.B. Treshchalov, A.A. Lissovski, J. Phys. D 42, 245203 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Lissovski, A.B. Treshchalov, Proc. SPIE 6938, 69380Y (2008)Google Scholar
  13. 13.
    A.A. Lissovski, A.B. Treshchalov, IEEE Trans. Plasma Sci. 36, 958 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R. Brodmann, G.J. Zimmerer, J. Phys. B 10, 3395 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    T. Bonifield, F. Ranbow, G. Walters, M. McCusker, D. Lorents, R. Gutcheck, Chem. Phys. Lett. 69, 290 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    H. Langhoff, J. Phys. B 27, L709 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    W.L. Wiese, M.W. Smith, B.M. Miles, Atomic Transition Probabilities National Bureau of Standards (US Government Printing Office, Washington, DC, 1966), Vol. 2Google Scholar
  18. 18.
    J. Wieser, A. Ulrich, A. Fedenev, M. Salvermoser, Proc. SPIE 4071, 248 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    T. Möller, J. Stapelfeldt, M. Beland, G. Zimmerer, Chem. Phys. Lett. 117, 301 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    C.E. Moore, Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra, NBS Pub. NSRDS-NBS 34 (US Government Printing Office, Washington, DC, 1970)Google Scholar
  22. 22.
    C. Cachoncinlle, J.-M. Pouvesle, G. Durand, F. Spiegelmann, J. Chem. Phys. 96, 6085 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    G. Herzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950), Vol. IGoogle Scholar
  24. 24.
    Y. Tanaka, K. Yoshino, D.E. Freeman, J. Chem. Phys. 62, 4491 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    W. Krötz, A. Ulrich, B. Busch, G. Ribitzki, J. Wieser, Appl. Phys. Lett. 55, 2265 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    A. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, A. Ulrich, J. Phys. D 37, 1586 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    P. Millet, A. Birot, H. Brunet, J. Galy, B. Pons-Germain, J.L. Teyssier, J. Chem. Phys. 69, 92 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    R. Johnsen, M. Biondi, Phys. Rev. A 18, 996 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    D. Smith, N. Adams, E. Alge, H. Villinger, W. Lindinger, J. Phys. B 13, 2787 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    R. Chang, D. Setser, J. Chem. Phys. 69, 3885 (1978)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations