Dissociation of molecular iodine in RF discharge for oxygen-iodine lasers

  • V. JirásekEmail author
  • J. Schmiedberger
  • M. Čenský
  • J. Kodymová
Regular Article


The dissociation of molecular iodine in 40 MHz-RF discharge was studied experimentally. This generation of atomic iodine is aimed at use in oxygen-iodine lasers. The discharge was ignited in a mixture of I2 + buffer gas fast-flowing through the cylindrical chamber and the discharge products were injected into a supersonic flow of nitrogen. The atomic iodine number density was measured in a low-pressure cavity after mixing with nitrogen and the dissociation fraction was calculated related to the input I2 flow rate. The dissociation fraction of 46.2% was achieved at 0.22 mmol/s of I2 and 7 mmol/s of Ar and RF power of 500 W. Argon and helium were used as a buffer gas; discharge stability and dissociation efficiency were better with argon. At the I2 flow rate corresponding to the operation of a 1 kW chemical oxygen-iodine laser, the dissociation fraction was about 20%. The dissociation efficiency (the fraction of absorbed energy used for the dissociation) significantly decreased with increasing in the specific energy. At a reasonable I2 flow rate (0.32 mmol/s), the maximum achieved efficiency was 8.5% and the corresponding energy cost was 8.9 eV per dissociating of one I2 molecule. The input energy of more than 3 kJ per 1 mmol of I2 is needed for dissociating at least 50% of I2. The obtained dependencies on the gas flow rates infer a good chance for scaling-up of the tested RF discharge generator for the intended application.


Plasma Physics 


  1. 1.
    A.S. Boreysho, Quantum Electron. 35, 393 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J. Schmiedberger, V. Jirásek, J. Kodymová, K. Rohlena, Eur. Phys. J. D 54, 239 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    V.N. Azyazov, S.Y. Pichugin, M.C. Heaven, J. Chem. Phys. 130, 104306 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    V. Jirásek, J. Hrubý, O. Špalek, M. Čenský, J. Kodymová, Appl. Phys. B 100, 779 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D.L. Carroll, D.M. King, in Proc. AIAA 33rd Plasmadynamics and Lasers Conference, Maui, Hawaii, 2002, pp. 2002–2277Google Scholar
  6. 6.
    G.F. Benavides, J.W. Zimmerman, B.S. Woodard, D.L. Carroll, J.T. Verdeyen, T.H. Field, A.D. Palla, W.C. Solomon, Appl. Phys. Lett. 92, 041116 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Hicks, J.R. Bruzzese, I.V. Adamovich, J. Phys. D 43, 025206 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. Katz, Z. Dahan, V. Rybalkin, K. Waichman, B.D. Barmashenko, S. Rosenwaks, Appl. Phys. Lett. 90, 161122 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    N.N. Yuryshev, N.P. Vagin, A.F. Konoshenko, V.S. Paziuk, Proc. SPIE 4631, 271 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    B. Quillen, W. Schall, in CD Proceedings, COIL R&D Workshop, edited by W. Bohn (Stuttgart, Germany, 2003)Google Scholar
  11. 11.
    V. Jirásek, J. Schmiedberger, M. Čenský, J. Kodymová, J. Phys. D 44, 115204 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Schmiedberger, V. Jirásek, M. Čenský, I. Picková, J. Kodymová, Proc. SPIE 7131, 71310E-1 (2008)Google Scholar
  13. 13.
    M. Suzuki, T. Suzuki, W. Masuda, JSME Int. J. Ser. B 45, 804 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    NIST Chemical Kinetics Database, Version 7.0 (Web Version), Release 1.5Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Jirásek
    • 1
    Email author
  • J. Schmiedberger
    • 1
  • M. Čenský
    • 1
  • J. Kodymová
    • 1
  1. 1.Institute of Physics, v.v.iAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations