Advertisement

Transmission of classical and quantum information through a quantum memory channel with damping

  • A. D’ArrigoEmail author
  • G. Benenti
  • G. Falci
Regular Article

Abstract

We consider the transfer of classical and quantum information through a memory amplitude damping channel. Such a quantum channel is modeled as a damped harmonic oscillator, the interaction between the information carriers — a train of qubits — and the oscillator being of the Jaynes-Cummings kind. We prove that this memory channel is forgetful, so that quantum coding theorems hold for its capacities. We analyze entropic quantities relative to two uses of this channel. We show that memory effects improve the channel aptitude to transmit both classical and quantum information, and we investigate the mechanism by which memory acts in changing the channel transmission properties.

Keywords

Quantum Information 

References

  1. 1.
    P.W. Shor, Phys. Rev. A 52, R2493 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    B. Schumacher, M.D. Westmoreland, Phys. Rev. A 56, 131 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A.S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    I. Devetak, IEEE Trans. Inf. Theory 51, 44 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information (World Scientific, Singapore 2007), Vol. IIGoogle Scholar
  8. 8.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nature Photonics 3, 706 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Kubo et al., Phys. Rev. Lett. 105, 140502 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    T. Duty, Physics 3, 80 (2010)CrossRefGoogle Scholar
  11. 11.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    C.H. Bennett, P.W. Shor, IEEE Trans. Inf. Theory 44, 2724 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    C. Macchiavello, G.M. Palma, Phys. Rev. A 65, 050301R (2002)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hamada, J. Math. Phys. 43, 4382 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    G. Bowen, S. Mancini, Phys. Rev. A 69, 012306 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    V. Giovannetti, J. Phys. A 38, 10989 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    D. Kretschmann, R.F. Werner, Phys. Rev. A 72, 062323 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    N. Datta, T.C. Dorlas, J. Phys. A 40, 8147 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    M.B. Plenio, S. Virmani, Phys. Rev. Lett. 99, 120504 (2007)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M.B. Plenio, S. Virmani, New J. Phys. 10, 043032 (2008)CrossRefGoogle Scholar
  21. 21.
    A. D’Arrigo, G. Benenti, G. Falci, New J. Phys. 9, 310 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Rossini et al., New J. Phys. 10, 115009 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    O.V. Pilyavets, V.G. Zborovskii, S. Mancini, Phys. Rev. A 77, 052324 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    A. Bayat, D. Burgarth, S. Mancini, S. Bose, Phys. Rev. A 77, R050306 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    G. Benenti, A. D’Arrigo, G. Falci, Phys. Rev. Lett. 103, 020502 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G.B. Lemos, G. Benenti, Phys. Rev. A 81, 062331 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    C. Lupo, V. Giovannetti, S. Mancini, Phys. Rev. Lett. 104, 030501 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    K. Banaszek, A. Dragan, W. Wasilewski, C. Radzewicz, Phys. Rev. Lett. 92, 257901 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    E. Paladino, L. Faoro, G. Falci, R. Fazio, Phys. Rev. Lett. 88, 228304 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    G. Falci, A. D’Arrigo, A. Mastellone, E. Paladino, Phys. Rev. Lett. 94, 167002 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    G. Ithier et al., Phys. Rev. B 72, 134519 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Meystre, M. Sargent III, Elements of Quantum Optics, 4th edn. (Springer-Verlag, Berlin 2007)Google Scholar
  34. 34.
    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    S. Haroche, J.M. Raimond, Exploring the Quantum (Oxford University Press, Oxford, 2006)Google Scholar
  36. 36.
    A. Wallraff et al., Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. Fink et al., Nature 454, 315 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Scr. T 137, 014012 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    X.-Y. Chen, Quantum Inf. Process. 9, 451 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    H. Barnum, M.A. Nielsen, B. Schumacher, Phys. Rev. A 57, 4153 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    B.W. Schumacher, Phys. Rev. A 54, 2614 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    B.W. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    I. Devetak, P.W. Shor, Commun. Math. Phys. 256, 287 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    G. Smith, Phys. Rev. A 78, 022306 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    H. Barnum, E. Knill, M.A. Nielsen, IEEE Trans. Inf. Theory 46, 1317 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, W.K. Wootters, Phys. Rev. A 54, 1869 (1996)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    A.S. Holevo, Probl. Inf. Transm. 9, 177 (1973)MathSciNetGoogle Scholar
  48. 48.
    M. Grifoni, E. Paladino, New J. Phys. 10, 115003 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    F. Cavaliere et al., New J. Phys. 10, 115004 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    A. Garg et al., J. Chem. Phys. 83, 4491 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    F. Plastina, G. Falci, Phys. Rev. B 67, 224514 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    V. Giovannetti, R. Fazio, Phys. Rev. A 71, 032314 (2005)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. 54.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    P. Facchi, S. Pascazio, J. Phys. A Math. Theor. 41, 493001 (2008)MathSciNetCrossRefGoogle Scholar
  56. 56.
    T. Hahn, arXiv:physics/0607103v2Google Scholar
  57. 57.
    B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Consiglio Nazionale delle RicercheCNR-IMM-Uos Catania (Università)CataniaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità degli Studi CataniaCataniaItaly
  3. 3.CNISM, CNR-INFM & Center for Nonlinear and Complex SystemsUniversità degli Studi dell’InsubriaComoItaly
  4. 4.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanoItaly
  5. 5.Centro Siciliano di Fisica Nucleare e di Struttura della Materia (CSFNSM)CataniaItaly

Personalised recommendations