Phase-selected momentum transport in ultra-cold atoms

  • M. SadgroveEmail author
  • S. Wimberger
  • K. Nakagawa
Regular Article


We propose a phase selected transport scenario for ultra-cold matter waves subject to pulsed optical lattices in which equally-populated momentum eigenstates with a flipped phase are localized while all other states are transported ballistically. The phenomenon relies on the concepts of quantum resonance and anti-resonance in two optical lattice potentials – one with half the wavelength of the other. We demonstrate the effectiveness of the technique in the presence of likely experimental noise sources, including the non-ideal situation where the momentum components are not all of equal amplitude. We also discuss possible uses for atom interferometric experiments and detail how to observe the phenomenon experimentally by creating an ideal initial state using standard atom-optical procedures.


Cold Matter and Quantum Gas 


  1. 1.
    O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J. Madronero et al., Adv. At. Mol. Opt. Phys. 53, 33 (2006)CrossRefGoogle Scholar
  3. 3.
    D.A. Steck, W.H. Oskay, M.G. Raizen, Science 293, 274 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    W.K. Hensinger et al., Nature 412, 52 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Wimberger, R. Mannella, O. Morsch, E. Arimondo, Phys. Rev. Lett. 94, 130404 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    F.M. Izrailev, D.L. Shepelyansky, Sov. Phys. Dokl. 24, 996 (1979)ADSGoogle Scholar
  7. 7.
    F.M. Izrailev, D.L. Shepelyansky, Theor. Math. Phys. 43, 353 (1980)CrossRefGoogle Scholar
  8. 8.
    S. Wimberger, I. Guarneri, S. Fishman, Nonlinearity 16, 1381 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    G. Casati, B.V. Chirikov, J. Ford, F.M. Izrailev, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, edited by G. Casati, J. Ford (Springer, Berlin, 1979), p. 334Google Scholar
  10. 10.
    S. Fishman, in Quantum Chaos, School “E. Fermi” CXIX, edited by G. Casati et al. (IOS, Amsterdam, 1993)Google Scholar
  11. 11.
    M. Sadgrove, M. Horikoshi, T. Sekimura, K. Nakagawa, Phys. Rev. Lett. 99, 043002 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    I. Dana, V. Ramareddy, I. Talukdar, G.S. Summy, Phys. Rev. Lett. 100, 024103 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Sadgrove, M. Horikoshi, T. Sekimura, K. Nakagawa, Eur. Phys. J. D 94, 229 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, M. Weitz, Science 326, 1243 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    J. Gong, P. Brumer, Phys. Rev. Lett. 86, 1741 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D. Witthaut et al., Phys. Rev. A 83, 063608 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sadgrove, Europhys. Lett. 86, 50005 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    D. Bigourd, B. Chatel, W.P. Schleich, B. Girard, Phys. Rev. Lett. 100, 030202 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M. Sadgrove, S. Kumar, K. Nakagawa, Phys. Rev. Lett. 101, 180502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    I. Talukdar, R. Shrestha, G.S. Summy, Phys. Rev. Lett. 105, 054103 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    G. Ritt, C. Geckeler, T. Salger, G. Cennini, M. Weitz, Phys. Rev. A 74, 063622 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    L. Pezzé, L. Sanchez-Palencia, Phys. Rev. Lett. 106, 040601 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    V.I. Yukalov, A. Rakhimov, S. Mardonov, Laser Phys. 21, 264 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    G. Duffy et al., Phys. Rev. E 70, 056206 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Kozuma, L. Deng, E.W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S.L. Rolston, W.D. Phillips, Phys. Rev. Lett. 82, 871 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    C. Ryu, M.F. Andersen, A. Vaziri, M.B. d’Arcy, J.M. Grossman, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 96, 160403 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M. Saunders, P.L. Halkyard, S.A. Gardiner, K.J. Challis, Phys. Rev. A 79, 023423 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A. Tonyushkin, S. Wu, M. Prentiss, Phys. Rev. A 79, 051402(R) (2009)ADSCrossRefGoogle Scholar
  30. 30.
    P. McDowall, A. Hilliard, M. McGovern, T. Grünzweig, M.F. Andersen, New J. Phys. 11, 123021 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M. Abb, I. Guarneri, S. Wimberger, Phys. Rev. E 80, R035206 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    G. Roati et al., Nature 453, 895 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J. Billy et al., Nature 453, 891 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B. Deissler et al., Nat. Phys. 6, 354 (2010)CrossRefGoogle Scholar
  35. 35.
    E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, G. Modugno, Phys. Rev. Lett. 106, 230403 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    K.J. Hughes, J.H.T. Burke, C.A. Sackett, Phys. Rev. Lett. 102, 150403 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Laser Science, The University of Electro CommunicationsChofugaokaJapan
  2. 2.Institut für Theoretische Physik, Universität HeidelbergHeidelbergGermany

Personalised recommendations