Mode transition in magnetic pole enhanced inductively coupled argon plasmas

  • F. JanEmail author
  • A. W. Khan
  • A. Saeed
  • M. Zakaullah
Regular Article


The electrical probe (Langmuir probe) diagnostics of different plasma parameters and operation regimes (E/H modes) of magnetic pole enhanced, inductively coupled (MaPE-ICP) argon plasmas are investigated. It is shown that uniform, high density (n e ∼ 1012 cm-3) and low electron temperature (T e ∼ 1.5 eV) plasma can be produced in low pressure argon discharges at a low power (100 W). It is found that an MaPE-ICP reactor operates in two different modes; capacitive (E mode) and inductive (H mode). No density jump or hysteresis are reported between these modes. The effect of pressure on transition power, where the mode changes from E to H mode at 20 sccm gas flow rate are studied and it is found that for all pressures tested (∼7.5 mTorr to 75 mTorr) the transition power remains same. In the inductive mode, the above plasma parameters show a smooth variation with increasing filling gas pressure at fixed power. The intensity of the emission line at 750.4 nm due to 2p 1 → 1s 2 (Paschen’s notation) transition, closely follows the variation of n e with RF power and filling gas pressure. Measured electron energy probability function (EEPF) shows that electron occupation mostly changes in the high-energy tail, which enlightens close similarity of the 750.4 nm argon line to electron number density (n e ). The behaviour of the electron energy probability function (EEPF) with regard to pressure and RF power in two operational modes is presented.


Plasma Physics 


  1. 1.
    T. Meziani, P. Colpo, F. Rossi, Plasma Source. Sci. Technol. 10, 276 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M.M. Turner, M.A. Lieberman, Plasma Source. Sci. Technol. 8, 313 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    U. Kortshagen, N.D. Gibson, J.E. Lawler, J. Phys. D 29, 1224 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    J.W. Denneman, J. Phys. D 23, 293 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    K. Chandrakar, J. Phys. D 11, 1809 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    S.V. Singh, Ph.D. dissertation, Ruhr University Bochum, 2005,
  7. 7.
    J. Hopwood, Plasma Source. Sci. Technol. 1, 109 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    M.H. Lee, C.W. Chung, Phys. Plasmas 13, 063510 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Daltrini, S.A. Moshkalev, T.J. Morgan, R.B. Piejak, W.G. Graham, Appl. Phys. Lett. 92, 061504 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Gudmundsson, Plasma Source. Sci. Technol. 10, 76 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    T. Kimura, K. Ohe, J. Appl. Phys. 89, 4240 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    I.M. El-Fayoumi, I.R. Jones, Plasma Source. Sci. Technol. 7, 162 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    K.N. Ostrikov, S. Xu, M.Y. Yu, J. Appl. Phys. 88, 2268 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    Z.F. Ding, G.Y. Yuan, W. Gao, J.C. Sun, Phys. Plasmas 15, 063506 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    S.H. Seo, C.W. Chung, H.Y. Chang, Surf. Coat. Technol. 131, 1 (2000)CrossRefGoogle Scholar
  16. 16.
    V.A. Godyak, V.I. Kolobov, Phys. Rev. Lett. 81, 369 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Liberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2004)Google Scholar
  18. 18.
    U. Kortshagen, I. Pukropski, L.D. Tsendin, Phys. Rev. E 51, 6063 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Source. Sci. Technol. 11, 525 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    S.V. Singh, Yu Ivanov, H. Soltwisch, Czech. J. Phys. 52, 576 (2002)Google Scholar
  21. 21.
    V.A. Godyak, Plasma Source. Sci. Technol. 20, 025004 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Druyvesteyn, Z. Phys. 64, 781 (1930)ADSCrossRefGoogle Scholar
  23. 23.
    J. Hopwood, C.R. Guarnieri, S.J. Whitehair, J.J. Cuomo, J. Vac. Sci. Technol. A 11, 152 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    R. Ikada, G. Nishimura, K. Kato, S. Iizuka, Thin Solid Films 457, 55 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Lim, K.N. Kim, M.H. Jeon, J.T. Lim, G.Y. Geun, Plasma Chem. Plasma Process. 31, 507 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R.B. Piejak, V.A. Godyak, B.M. Alexandrovich, Plasma Source. Sci. Technol. 1, 179 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.National Centre for PhysicsQuaid-i-Azam University CampusIslamabadPakistan

Personalised recommendations