The European Physical Journal D

, Volume 64, Issue 2–3, pp 419–426 | Cite as

Arbitrary magnetosonic solitary waves in spin 1/2 degenerate quantum plasma

Regular Article Plasma Physics

Abstract

Linear and nonlinear compressional magnetosonic waves are studied in magnetized degenerate spin-1/2 Fermi plasmas. Starting from the basic equations of a quantum magnetoplasma we develop the system of quantum magnetohydrodynamic (QMHD) equations. Spin effects are incorporated via spin force and macroscopic spin magnetization current. Sagdeev potential approach is employed to derive the nonlinear energy integral equation which admits the rarefactive solitary structure in the subAlfvenic region. The quantum diffraction due to Bohm potential does not affect the amplitude of soliton but has a direct effect on its width. The width of soliton is broadened with the increase in the quantization of the system due to quantum diffraction. However, the nonlinear wave amplitude is reduced with the increase in the value of magnetization energy due to electron spin-1/2 effects. The degeneracy effect due to quantum plasma beta enhances the amplitude of magnetosonic soliton. The importance of the work relevant to compact astrophysical bodies is pointed out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E 65, 046417 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    M. Marklund, Phys. Plasmas 12, 082110 (2005) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993) Google Scholar
  4. 4.
    F. Haas, M. Marklund, G. Brodin, J. Zamanian, Phys. Lett. A 374, 481 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    F. Haas, G. Manfredi, M.R. Feix, Phys. Rev. E 62, 2763 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Vladimirov, Yu.O. Tyshetskiy, Phys. Uspekhi (2011), in press Google Scholar
  8. 8.
    F. Haas, Phys. Plasmas 12, 062117 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    M. Marklund, G. Brodin, Phys. Rev. Lett. 98, 25001 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. Brodin, M. Marklund, New J. Phys. 9, 277 (2007) CrossRefGoogle Scholar
  11. 11.
    M. Marklund, B. Eliasson, P.K. Shukla, Phys. Rev. E 76, 067401 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    G. Brodin, M. Marklund, Phys. Plasmas 14, 112107 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    A. Mushtaq, A. Qamar, Phys. Plasmas 16, 022301 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    A. Mushtaq, S.V. Vladimirov, Phys. Plasmas 17, 102310 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    M. Stefan, G. Brodin, M. Marklund, New J. Phys. 12, 013006 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    N. Shukla, G. Brodin, M. Marklund, P.K. Shukla, L. Stenflo, Phys. Plasmas 16, 072114 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    P.K. Shukla, J. Plasma Phys. 74, 107 (2008) ADSGoogle Scholar
  18. 18.
    P.K. Shukla, L. Stenflo, J. Plasma Physics 74, 719 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, New York, 2005), p. 317 Google Scholar
  20. 20.
    J.P. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, UK, 2004), p. 57 Google Scholar
  21. 21.
    L. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, 1980), p. 167 Google Scholar
  22. 22.
    R.K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1996), p. 202 Google Scholar
  23. 23.
    L. Landau, Z. Phys. 64, 629 (1930) ADSCrossRefGoogle Scholar
  24. 24.
    N.F. Cramer, The Physics of Alfvén Waves (Wiley-VCH Verlag, Berlin, Germany, 2001), p. 30 Google Scholar
  25. 25.
    P.M.S. Blackett, Nature 159, 658 (1947) ADSCrossRefGoogle Scholar
  26. 26.
    V.L. Ginzburg, Sov. Phys. Dokl. 9, 329 (1954) ADSGoogle Scholar
  27. 27.
    D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990) ADSCrossRefGoogle Scholar
  28. 28.
    G. Chabrier, D. Saumon, A.Y. Potekhin, J. Phys. A 39, 4411 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    T. Padmanabhan, Theoretical Astrophysics: Stars, Stellar Systems (Cambridge University Press, London, 2001), Vol. II Google Scholar
  30. 30.
    G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys: Condens. Matter 14, 9133 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    P.A. Bradley, D.E. Winget, M.A. Wood, Astrophys. J. 406, 661 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    P.A. Bradley, D.E. Winget, Astrophys. J. 75, 463 (1991) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.TPPD, PINSTECH, P.O. NiloreIslamabadPakistan
  2. 2.School of PhysicsUniversity of SydneyNSWAustralia

Personalised recommendations