Advertisement

The European Physical Journal D

, Volume 65, Issue 3, pp 367–372 | Cite as

Magneto-electric response functions for simple atomic systems

  • J. Babington
  • B. A. van Tiggelen
Regular Article Atomic Physics

Abstract

We consider a simple atomic two-body bound state system that is overall charge neutral and placed in a static electric and magnetic field, and calculate the magneto-electric response function as a function of frequency. This is done from first principles using a two-particle Hamiltonian for both an harmonic oscillator and Coulomb binding potential. In the high frequency limit, the response function falls off as 1/ω 2 whilst at low frequencies it tends to a constant value.

Keywords

Response Function Harmonic Oscillator Atomic System Helium Atom High Frequency Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rizzo, S. Coriani, J. Chem. Phys. 119, 11064 (2003) CrossRefADSGoogle Scholar
  2. 2.
    A. Rizzo, D. Shcherbin, K. Ruud, Can. J. Chem. 87, 1352 (2009) CrossRefGoogle Scholar
  3. 3.
    T. Roth, G.L.J.A. Rikken, Phys. Rev. Lett. 88, 063001 (2002). CrossRefADSGoogle Scholar
  4. 4.
    E.B. Graham, R.E. Raab, Proc. Roy. Soc. Lond. Ser. A 390, 73 (1983)CrossRefADSGoogle Scholar
  5. 5.
    A. Feigel, Phys. Rev. Lett. 92, 020404 (2004) CrossRefADSGoogle Scholar
  6. 6.
    B.A. van Tiggelen, G.L.J.A. Rikken, V. Krstic, Phys. Rev. Lett. 96, 130402 (2006) CrossRefADSGoogle Scholar
  7. 7.
    O.J. Birkeland, I. Brevik, Phys. Rev. E 76, 066605 (2007) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    X.G. Wen, Quantum field theory of many-body systems (OUP, 2004)Google Scholar
  9. 9.
    R. Loudon, The Quantum Theory of Light (OUP, 2000)Google Scholar
  10. 10.
    S. Kawka, B.A. van Tiggelen, Europhys. Lett. 89, 11002 (2010) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.University Grenoble 1/CNRS, LPMMC UMR 5493GrenobleFrance

Personalised recommendations