Advertisement

Soliton dynamics in velocity matched ultrafast frequency conversion processes

  • M. ConfortiEmail author
  • F. Baronio
Optical Phenomena and Photonics Regular Article

Abstract.

We consider ultrafast second order frequency conversion processes, under group velocity matching conditions. The three wave interaction equations, describing velocity matched ultrafast optical frequency conversion processes, can be reduced to Sine-Gordon equation. In this way, the well known Sine-Gordon solitons can be mapped into three wave soliton solutions. Here, we report the numerical dynamics of three wave simultons, two-solitons and breathers in ultrafast second order frequency conversion processes.

Keywords

Soliton Group Velocity Conforti Soliton Dynamic Three Wave Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Cerullo, S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, R. Ricken, W. Sohler, Opt. Lett. 24, 896 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, N. Ming, Opt. Lett. 26, 899 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, G. Cerullo, Opt. Lett. 33, 741 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Marangoni, D. Brida, M. Conforti, A. Capobianco, C. Manzoni, F. Baronio, G. Nalesso, C. De Angelis, R. Ramponi, G. Cerullo, Opt. Lett. 34, 241 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F. Konig, F.N.C. Wong, Appl. Phys. Lett. 84, 1644 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    N.E. Yu et al., Appl. Phys. Lett. 82, 2288 (2003)Google Scholar
  8. 8.
    E. Ibragimov, A. Struthers, Opt. Lett. 21, 1582 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    M. Conforti, F. Baronio, A. Degasperis, S. Wabnitz, Opt. Express 15, 12246 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    V.E. Zakharov, S.V. Manakov, Sov. Phys. JETP Lett. 18, 243 (1973)ADSGoogle Scholar
  11. 11.
    D.J. Kaup, A. Reiman, A. Bers, Rev. Mod. Phys. 51, 275 (1979)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. Picozzi, M. Haelterman, Opt. Lett. 23, 1808 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    A. Degasperis, M. Conforti, F. Baronio, S. Wabnitz, Phys. Rev. Lett. 97, 093901 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    F. Baronio, M. Conforti, C. De Angelis, A. Degasperis, M. Andreana, V. Couderc, A. Barthelemy, Phys. Rev. Lett. 104, 113902 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    F. Baronio, M. Conforti, A. Degasperis, S. Wabnitz, IEEE J. Quantum Electron. 44, 542 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Barone, F. Esposito, C.J. Magee, A.S. Scott, Riv. Nuovo Cim. 1, 227 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett. 30, 1262 (1973)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    E. Ibragimov, A. Struthers, J. Opt. Soc. Am. B 14, 1472 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    K. Nozaki, J. Phys. Soc. Jpn 37, 206 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    N. Yu, S. Kurimura, K. Kitamura, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, Appl. Phys. Lett. 82, 3388 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.CNISM, Dipartimento di Ingegneria dell’Informazione, Università di BresciaBresciaItaly

Personalised recommendations