Advertisement

Novel electrodynamic trapping mechanism for neutral, polar particles

  • R. BlümelEmail author
Regular Article Nonlinear Dynamics

Abstract

A conceptually new trapping mechanism for neutral, polar particles is introduced and discussed. Unlike existing mechanisms that are based on oscillating saddle-point potentials or rotating electric dipole fields, the new mechanism is based on a superposition of ac and dc electric monopolefields that dynamically generate a minimum of the effective ponderomotive potential in which the particles are trapped. Extensive numerical simulations of the dynamics and the stability properties of trapped HC17N molecules and ferroelectric rods (made of barium titanate or croconic acid crystals) prove the validity of the new mechanism. The examples show that the same mechanism is applicable to the trapping of macroscopic as well as microscopic particles. The numerical results are backed by a physical pseudo-potential picture and an analytical stability analysis that provide physical insight into why and how the new mechanism works. A semi-quantum, Born-Oppenheimer-type calculation that treats the intrinsic rotational degree of freedom of HC17N quantum mechanically is also presented. A detailed discussion of engineering aspects shows that laboratory implementation of the new mechanism is within current technological reach.

Keywords

Wave Packet Orbital Angular Momentum Barium Titanate Induce Polarization Stable Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    B. Friedrich, J.M. Doyle, Chem. Phys. Chem. 10, 604 (2009)CrossRefGoogle Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Quantum Information Processing, edited by G. Leuchs, Th. Beth (Wiley-VCH, Weinheim, 2003)Google Scholar
  6. 6.
    H. Sabbah, L. Biennier, I.R. Sims, Yu. Georgievskii, S.J. Klippenstein, I.W.M. Smith, Science 317, 102 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ospelhaus, K.-K. Ni, D. Wang, M.H.G. de Miranda, B. Neyenhuis, G. Quéméner, P.S. Julienne, J.L. Bohn, D.S. Jin, J. Ye, Science 327, 853 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    V.V. Vladimirskii, Sov. Phys. JETP 12, 740 (1961)Google Scholar
  9. 9.
    W.H. Wing, Phys. Rev. Lett. 45, 631 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    S.K. Sekatskii, JETP Lett. 62, 916 (1995)ADSGoogle Scholar
  11. 11.
    S.K. Sekatskii, J. Schmiedmayer, Europhys. Lett. 36, 407 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature 406, 491 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    J. van Veldhoven, H.L. Bethlem, G. Meijer, Phys. Rev. Lett. 94, 083001 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    H.L. Bethlem, J. van Veldhoven, M. Schnell, G. Meijer, Phys. Rev. A 74, 063403 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    D. DeMillea, D.R. Glenn, J. Petricka, Eur. Phys. J. D 31, 375 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    R.V.E. Lovelace, C. Mehanian, T.J. Tommila, D.M. Lee, Nature 318, 30 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Biophys. J. 77, 2856 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Ashkin, J.M. Dziedzic, Science 235, 1517 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    E. Peik, Eur. Phys. J. D 6, 179 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    N. Christofilos, Focusing System for Ions and Electrons, US Patent No. 2 736 799Google Scholar
  22. 22.
    E.D. Courant, M.S. Livingston, H.S. Snyder, J.P. Blewett, Phys. Rev. 91, 202 (1953)ADSCrossRefGoogle Scholar
  23. 23.
    E.D. Courant, M.S. Livingston, H.S. Snyder, Phys. Rev. 88, 1190 (1952)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    R. Blümel, Phys. Rev. A 83, 045402 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1971), p. 476Google Scholar
  27. 27.
    W.S. Yun, J.J. Urban, Q. Gu, H. Park, Nano Lett. 2, 447 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    J.B. Marion, S.T. Thornton, Classical Dynamics, 3rd edn. (Harcourt Brace Jovanovich, Fort Worth, 1988)Google Scholar
  29. 29.
    Handbook of Chemistry and Physics, edited by R.C. Weast, 55th edn., 1974–1975 (CRC Press, Cleveland, OH, 1974), p. B-72Google Scholar
  30. 30.
    F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon Press, New York, 1962)Google Scholar
  31. 31.
    S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 463, 789 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Supplementaty Information on [31], http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08731.html
  33. 33.
    C. Day, Phys. Today 63, 16 (2010)CrossRefGoogle Scholar
  34. 34.
    M.C. McCarthy, J.-U. Grabow, M.J. Travers, W. Chen, C.A. Gottlieb, P. Thaddeus, Astrophys. J 494, L231 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    I. Garrick-Bethell, Th. Clausen, R. Blümel, Phys. Rev. E 69, 056222 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983)Google Scholar
  37. 37.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)Google Scholar
  38. 38.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington DC, 1964)Google Scholar
  39. 39.
    L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1960)Google Scholar
  40. 40.
    H.G. Dehmelt, Adv. Atom. Mol. Phys. 3, 53 (1967)CrossRefGoogle Scholar
  41. 41.
    H. Friedrich, Theoretical Atomic Physics, 3rd edn. (Springer, Berlin, 2006)Google Scholar
  42. 42.
    B.M. Lamb, G.J. Morales, Phys. Fluids 26, 3488 (1983)ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    R. Blümel, J. Mehl, J. Statist. Phys. 68, 311 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    R. Blümel, B. Esser, Phys. Rev. Lett. 72, 3658 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    R. Blümel, B. Esser, Z. Phys. B 98, 119 (1995)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    F. Cooper, J.F. Dawson, D. Meredith, H. Shepard, Phys. Rev. Lett. 72, 1337 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    R. Blümel, W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 1997)Google Scholar
  48. 48.
    L.C. Biedenharn, P.J. Brussaard, Coulomb Excitation (Clarendon Press, Oxford, 1965)Google Scholar
  49. 49.
    Encyclopedia of Physics, edited by R.G. Lerner, G.L. Trigg, 2nd edn. (VCH Publishers, New York, 1991)Google Scholar
  50. 50.
    D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, N.J., 1951)Google Scholar
  51. 51.
    R. Blümel, Phys. Rev. A 51, R30 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    K. Cummings, P.W. Laws, E.F. Redish, P.J. Cooney, Understanding Physics (John Wiley & Sons, NJ, 2004), Table 23-1, p. 664Google Scholar
  53. 53.
    D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Upper Saddle River, NJ, 1999)Google Scholar
  54. 54.
    E. Riis, S.M. Barnett, Europhys. Lett. 21, 533 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    E. Riis, S.M. Barnett, Europhys. Lett. 30, 441 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    E.A. Cornell, Europhys. Lett. 30, 439 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    H.J. Loesch, Chem. Phys. 207, 427 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    H.J. Loesch, B. Scheel, Phys. Rev. Lett. 85, 2709 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    R.T. Jongma, G. von Helden, G. Berden, G. Meijer, Chem. Phys. Lett. 270, 304 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    R. Blümel, Appl. Phys. B 60, 119 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    E. Peik, J. Fletcher, J. Appl. Phys. 82, 5283 (1997)ADSCrossRefGoogle Scholar
  62. 62.
    H. Dehmelt, N. Yu, Proc. Natl . Acad. Sci . USA 94, 10031 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    K.S. Yeong, J.T.L. Thong, J. Appl. Phys. 100, 114325 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    B.T. Seaman, M. Krämer, D.Z. Anderson, M.J. Holland, Phys. Rev. A 75, 023615 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    R.A. Pepino, J. Cooper, D.Z. Anderson, M.J. Holland Phys. Rev. Lett. 103, 140405 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nature Phys. 2, 36 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)ADSCrossRefGoogle Scholar
  68. 68.
    S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 92, 223001 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    F.M.H. Crompvoets, H.L. Bethlem, R.T. Jongma, G. Meijer, Nature 411, 174 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    H. Nishimura, G. Lambertson, J.G. Kalnins, H. Gould, Eur. Phys. J. D 31, 359 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Wesleyan UniversityMiddletownUSA

Personalised recommendations