Structural and magnetic properties of FemYn (m + n = 7, Y = Ru, Rh, Pd, and Pt) nanoalloys

  • J.M. Montejano-CarrizalesEmail author
  • F. Aguilera-Granja
  • J.L. Morán-López
Clusters and Nanostructures Regular Article


The structural and magnetic properties of the small binary clusters Fe m Y n (with m + n = 7, Y = Ru, Rh, Pd, Pt) were studied through extensive ab initio calculations, by means of the fully unconstrained version of the density-functional method, as implemented in the SIESTA code, within the generalized gradient approximation. The lowest energy state geometries, the chemical ordering, and the electronic and the magnetic structures were calculated. We found that the lowest energy geometrical structures for the pure Ru, Rh, Pd, Pt, and Fe heptamers, are a cube without an apex, a triangular prism capped on a square face, a decahedron, a side capped double square, and a decahedron, respectively. Starting from these geometries of the pure element heptamers, we followed the changes in the geometric structure as a function of the chemical composition. We analyzed all the different chemical arrangements, which depend on the particular geometry, and magnetic moment orientations, in the whole range of compositions. In general, there are important modifications to the magnetic moment of the Y atoms as soon as one of them is substituted by an Fe atom in the cluster. In contrast, under the same circumstances, the Fe magnetic moment takes values larger than 3 μ B and keeps almost this value, insensitive to the structure, composition and chemical order of the system.


Cohesive Energy Netic Moment Lower Energy State Ground State Structure Triangular Prism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    M.C. Cadeville, J.L. Morán-López, Phys. Rep. 153, 331 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Cox, J.G. Louderback, L.A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    R. Galicia, Rev. Mex. Fis. 32, 51 (1985)Google Scholar
  5. 5.
    T. Shinohara, T. Sato, T. Taniyama, Phys. Rev. Lett. 91, 197201 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    H. Cantera-López, J.M. Montejano-Carrizales, F. Aguilera-Granja, J.L. Morán-López, Eur. Phys. J. D 57, 61 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Uba, A.N. Yaresko, L. Uba, A.Y. Perlov, V.N. Antonov, R. Gontarz, H. Ebert, Phys. Rev. B 57, 1534 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    F. Aguilera-Granja, A. Vega, J. Rogan, X. Andrade, G. García, Phys. Rev. B 74, 224405 (2006), and references thereinADSCrossRefGoogle Scholar
  9. 9.
    D. Zitoun, M. Raspaud, M.-C. Fromen, M.J. Casanova, P. Lacante, C. Amiens, B. Chaudret, Phys. Rev. Lett. 89 037203 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Alonso, Chem. Rev. 100, 267 (2000)CrossRefGoogle Scholar
  11. 11.
    Y. Sun, M. Zhang, R. Fournier, Phys Rev. B 77, 075435 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    F. Aguilera-Granja, L.C. Balbas, A. Vega, J. Chem. Phys. A 113, 13483 (2009), and references thereinCrossRefGoogle Scholar
  13. 13.
    J. Mejía-López, A.H. Romero, M.E. García, J.L. Morán-López, Phys. Rev. B 74, 134405 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Mejía-López, A.H. Romero, M.E. García, J.L. Morán-López, Phys. Rev. B 78, 140405 (2008)CrossRefGoogle Scholar
  15. 15.
    E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    L. Kleinman, D.M. Bilander, Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    A. Lyalin, A.V. Solov’yov, W. Greiner, Phys. Rev. A 74, 043201 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    F. Aguilera-Granja, R.C. Longo, A. Vega, J.L. Gallego, J. Chem. Phys. 132, 184507 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Aguilera-Granja, A. Vega, Phys. Rev. B 79, 144423 (2006), and references thereinADSCrossRefGoogle Scholar
  22. 22.
    H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B 25, 4412 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Montano, G.K. Shenoy, Solid State Commun. 35, 53 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    M.D. Morse, Chem. Rev. 86, 1049 (1986)CrossRefGoogle Scholar
  25. 25.
    J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002)CrossRefGoogle Scholar
  26. 26.
    V. Kumar, Y. Kawazoe, Phys. Rev. 66, 144413 (2002), and references thereinCrossRefGoogle Scholar
  27. 27.
    F. Aguilera-Granja, A. Vega, J. Rogan, G. García, Nanotechnology 18, 365706 (2007), and references thereinCrossRefGoogle Scholar
  28. 28.
    V. Kumar, Y. Kawazoe, Phys. Rev. B 77, 205418 (2008), and references thereinADSCrossRefGoogle Scholar
  29. 29.
    Y.-C. Bae, H. Osanai, V. Kumar, Y. Kawasoe, Mater. Trans. 46, 159 (2005)CrossRefGoogle Scholar
  30. 30.
    B.V. Reddy, S.N. Khanna, B.I. Dunlap, Phys. Rev. Lett. 70, 3323 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    M. Moseler, H. Haakkinen, N.R. Barnet, U. Landman, Phys. Rev. Lett. 86, 2545 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    F. Aguilera-Granja, J.M. Montejano-Carrizales, A. Vega, J. Ferrer, J. Rogan, G. García, Rev. Mex. Fis. 54, 149 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J.M. Montejano-Carrizales
    • 1
    Email author
  • F. Aguilera-Granja
    • 1
  • J.L. Morán-López
    • 2
  1. 1.Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoSan Luis PotosíMéxico

Personalised recommendations