Advertisement

The European Physical Journal D

, Volume 65, Issue 1–2, pp 285–297 | Cite as

Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

  • J. WelzelEmail author
  • A. Bautista-Salvador
  • C. Abarbanel
  • V. Wineman-Fisher
  • C. Wunderlich
  • R. Folman
  • F. Schmidt-Kaler
Regular Article Cooling and trapping methods

Abstract

We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 μm above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [J. Phys. B At. Mol. Opt. Phys. 42, 154009 (2009)]. We describe aspects where planar ion traps promise novel physics: spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schrödinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.

Keywords

Coupling Strength Magnetic Gradient Quantum Simulation Planar Trap Resonant Enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Feynman, Int. J. Theor. Phys. 21, 467 (1982)CrossRefGoogle Scholar
  2. 2.
    J.T. Barreiro et al., Nature Phys. 6, 943 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, H.P. Büchler, Nature Phys. 6, 382 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. Jaksch, P. Zoller, Ann. Phys. 52, 315 (2005)Google Scholar
  5. 5.
    J.I. Cirac, P. Zoller, Nature 404, 579 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 20, 4091 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A. Sen(De), U. Sen, J. Dziarmaga, A. Sanpera, M. Lewenstein, Phys. Rev. Lett. 101, 187202 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Santos et al., Phys. Rev. Lett. 93, 030601 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A.V. Gorshkov et al., Nature Phys. 6, 289 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Taie et al., Phys. Rev. Lett. 105, 190401 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A. Friedenauer, H. Schmitz, J. Glückert, D. Porras, T. Schätz, Nature Phys. 4, 757 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kim et al., Nature 465, 590 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    L. Lamata, J. Leon, T. Schaetz, E. Solano, Phys. Rev. Lett. 98, 253005 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J. Casanova, J.J. García-Ripoll, R. Gerritsma, C.F. Roos, E. Solano, Phys. Rev. A 82, R020101 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature 463, 68 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Hauke, F. Cucchietti, A. Müller-Hermes, M. Bañuls, J.I. Cirac, M. Lewenstein, New J. Phys. 12, 113037 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Wunderlich, Conditional spin resonance with trapped ions, in Laser Physics at the limit (Springer, Berlin, 2002), p. 261CrossRefGoogle Scholar
  20. 20.
    M. Johanning et al., Phys. Rev. Lett. 102, 073004 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-Kaler, Phys. Rev. A 79, 052324 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. Johanning, A. Varón, C. Wunderlich, J. Phys. B At. Mol. Opt. Phys. 42, 154009 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Chiaverini, W.E. Lybarger, Jr., Phys. Rev. A 77, 022324 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. Chiaverini et al., Quantum Inf. Comput. 5, 419 (2005)MathSciNetGoogle Scholar
  26. 26.
    D. Kielpinski, C.R. Monroe, D.J. Wineland, Nature 417, 709 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    N. Daniilidis et al., New J. Phys. 13, 013032 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    J. Labaziewicz et al., Phys. Rev. Lett. 100, 013001 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Appl. Phys. Lett. 94, 094103 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Amini, J. Britton, D. Leibfried, D.J. Wineland, Micro-Fabricated Chip Traps for Ions, in Atom Chips, edited by J. Reichel, V. Vuletić (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)CrossRefGoogle Scholar
  32. 32.
    M.G. House, Phys. Rev. A 78, 033402 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    K. Singer et al., Rev. Mod. Phys. 82, 2609 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    G. Huber, F. Ziesel, U.G. Poschinger, K. Singer, F. Schmidt-Kaler, Appl. Phys. B 100, 725 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M. Hellwig, A. Bautista-Salvador, G. Werth, F. Schmidt-Kaler, New J. Phys. 12, 065019 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    P. Elleaume, O. Chubar, J. Chavanne, Computing 3D Magnetic Field from Insertion Devices, Proc. PAC97 Conference (1997), p. 3509Google Scholar
  37. 37.
    O. Chubar, P. Elleaume, J. Chavanne, J. Synchrotron Radiat. 5, 481 (1998)CrossRefGoogle Scholar
  38. 38.
    S. Groth et al., Appl. Phys. Lett. 85, 2980 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    S.-L. Zhu, C. Monroe, L.-M. Duan, Phys. Rev. Lett. 97, 050505 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    D.F.V. James, Appl. Phys. B 66, 181 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    D.G. Enzer et al., Phys. Rev. Lett. 85, 2466 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    J.P. Schiffer, Phys. Rev. Lett. 70, 818 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    U.G. Poschinger et al., J. Phys. B 42, 154013 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    H.C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, Optic. Express 3, 89 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    M. Drewsen, A. Mortensen, R. Martinussen, P. Staanum, J. Sörensen, Phys. Rev. Lett. 93, 243201 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    U.G. Poschinger, A. Walther, K. Singer, F. Schmidt-Kaler, Phys. Rev. Lett. 105, 263602 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    A.H. Myerson et al., Phys. Rev. Lett. 100, 200502 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    K. Moelmer, A. Soerensen, Phys. Rev. Lett. 82, 1835 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    D. Leibfried et al., Nature 422, 412 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    C.F. Roos, New J. Phys. 10, 013002 (2008)CrossRefGoogle Scholar
  51. 51.
    K. Kim et al., Phys. Rev. Lett. 103, 120502 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    E.E. Edwards et al., Phys. Rev. B 82, 060412 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    C. Ospelkaus et al., arXiv:1104.3573Google Scholar
  54. 54.
    A. Retzker, R.C. Thompson, D.M. Segal, M.B. Plenio, Phys. Rev. Lett. 101, 260504 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    E. Shimshoni, G. Morigi, S. Fishman, Phys. Rev. Lett. 106, 010401 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    P.A. Ivanov, F. Schmidt-Kaler, arXiv:1105.0598Google Scholar
  57. 57.
    R. Schmied, J.H. Wesenberg, D. Leibfried, Phys. Rev. Lett. 102, 233002 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    M. Kumph, M. Brownnutt, R. Blatt, Nature 471, 196 (2011)CrossRefGoogle Scholar
  59. 59.
    K.R. Brown et al., arXiv:1011.0473Google Scholar
  60. 60.
    J.S. Meyer, K.A. Matveev, A.I. Larkin, Phys. Rev. Lett. 98, 126404 (2007)ADSCrossRefGoogle Scholar

Copyright information

© The Authors(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • J. Welzel
    • 1
    Email author
  • A. Bautista-Salvador
    • 1
  • C. Abarbanel
    • 2
  • V. Wineman-Fisher
    • 2
  • C. Wunderlich
    • 3
  • R. Folman
    • 4
  • F. Schmidt-Kaler
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg Universität Mainz, QUANTUMMainzGermany
  2. 2.Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevShevaIsrael
  3. 3.Universität SiegenSiegenGermany
  4. 4.Department of PhysicsBen-Gurion University of the NegevShevaIsrael

Personalised recommendations