Advertisement

The European Physical Journal D

, Volume 63, Issue 1, pp 135–139 | Cite as

Algorithm for polarimetry data inversion, consistent with other measuring techniques in tokamak plasma

  • Yu. A. Kravtsov
  • J. ChrzanowskiEmail author
  • D. Mazon
Plasma Physics Regular Article

Abstract

New procedure for plasma polarimetry data inversion is suggested, which fits two parameter knowledge-based plasma model to the measured parameters (azimuthal and ellipticity angles) of the polarization ellipse. The knowledge-based model is supposed to use the magnetic field and electron density profiles, obtained from magnetic measurements and LIDAR data on the Thomson scattering. In distinction to traditional polarimetry, polarization evolution along the ray is determined on the basis of angular variables technique (AVT). The paper contains a few examples of numerical solutions of these equations, which are applicable in conditions, when Faraday and Cotton-Mouton effects are simultaneously strong.

Keywords

Plasma Parameter Geometrical Optic Ellipticity Angle Inhomogeneous Plasma Angular Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Segre, Plasma Phys. Control. Fusion 41, R57 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    S.E. Segre, J. Opt. Soc. Am. A 18, 2601 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Donne et al., Rev. Sci. Instrum. 70, 726 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S.E. Guenther, Plasma Phys. Control. Fusion 46, 1423 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S.E. Segre, V. Zanza, Plasma Phys. Control. Fusion 48, 339 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Z.H. Czyz, B. Bieg, Yu.A. Kravtsov, Phys. Lett. A 368, 101 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Yu.A. Kravtsov, Sov. Phys. Doklady 13, 1125 (1969) ADSGoogle Scholar
  8. 8.
    Yu.A. Kravtsov, O.N. Naida, A.A. Fuki, Phys. Uspekhi 39, 129 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Fuki, Yu.A. Kravtsov, O.N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, Lond., N.Y., 1997)Google Scholar
  10. 10.
    Yu.A. Kravtsov, Yu.I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, Berlin, 1990)Google Scholar
  11. 11.
    Yu.A. Kravtsov, Geometrical Optics in Engineering Physics (Alpha Sci. Int., Harrow, UK, 2005)Google Scholar
  12. 12.
    Yu.A. Kravtsov, B. Bieg, K.Yu. Bliokh, J. Opt. Soc. Am. A 24, 3388 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Yu.A. Kravtsov, Ning Yan Zhu, Theory of Diffraction, Heuristic Approaches (Alpha Science International, Harrow, UK, 2010)Google Scholar
  14. 14.
    N.C. Hawkes , M. Brix , Rev. Sci. Instrum. 77, 10E509 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Brix , N.C. Hawkes , A. Boboc , V. Drozdov , S.E. Sharapov , Rev. Sci. Instrum. 79, 10F325 (2008)CrossRefGoogle Scholar
  16. 16.
    S.A. Arshad, Fusion Sci. Technol. 53, 667 (2008)Google Scholar
  17. 17.
    W.P. Allis, S.J. Buchsbaum, A. Bers, Waves in Anisotropic Plasma (MIT Press, Cambridge, 1963)Google Scholar
  18. 18.
    V.I. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1970) Google Scholar
  19. 19.
    Yu.A. Kravtsov , B. Bieg , Plasma Phys. Control. Fusion 52, 02.2001 (2010)CrossRefGoogle Scholar
  20. 20.
    Yu.A. Kravtsov, J. Chrzanowski, Centr. Eur. J. Phys. 9, 2011 (2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Space Research InstituteMoscowRussia
  2. 2.Institute of Physics, Maritime University of SzczecinSzczecinPoland
  3. 3.Association Euratom/CEA, CEA Cadarache DSM/IRFMSt.Paul-lez-Durance CedexFrance
  4. 4.JETCulhamUK

Personalised recommendations