Advertisement

The European Physical Journal D

, Volume 62, Issue 2, pp 185–189 | Cite as

On the Cd III spectrum in a pulsed helium discharge

  • S. Djeniže
  • A. Srećković
  • S. BukvićEmail author
Regular Article

Abstract

On the basis of the spectral line intensity relaxation during the plasma decay, fifty six spectral lines between 219 nm and 330 nm in the cadmium (Cd) spectrum were identified as Cd III (doubly ionized) or Cd IV (triply ionized) lines. The measured Stark widths of twelve, the most intense spectral lines around 315±15 nm with well defined profiles, are presented. Investigated spectral lines originate from the high lying energy levels, not classified up to now. A linear low-pressure pulsed arc was used as an optically thin plasma source. A pulsed discharge was produced in a pyrex discharge tube. Helium was chosen as the carrier gas. The cadmium atoms were sputtered from the thin cadmium cylindrical plates located in the homogeneous axial part of the discharge tube. The helium plasma was operated at electron temperatures up to 19 000 K and 1.1 × 1023 m-3 electron density. The stepwise ionization processes via the high lying singly ionized (Cd II) energy levels, populated well due to the Penning and charge exchange effects, provide high density of the Cd III (and Cd IV) ions in our helium plasma. The temporal evolutions of the spectral line intensities were monitored using a spectrograph and an ICCD camera as a highly sensitive detection system.

Keywords

Cadmium Spectral Line Discharge Tube Rogowski Coil Helium Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.S. Tibilov, Opt. Spektrosk. (in Russian) 19, 463 (1965) ADSGoogle Scholar
  2. 2.
    W.K. Schuebel, Appl. Phys. Lett. 16, 470 (1970) ADSCrossRefGoogle Scholar
  3. 3.
    W.T. Silfvast, G.R. Fowles, B.D. Hopkins, Appl. Phys. Lett. 8, 318 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    L. Csillag, M. Jánossy, K. Kántor, K. Rózsa, T. Salamon, J. Phys. D 3, 64 (1970) ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Rocca, J.D. Meyer, G.J. Collins, Phys. Lett. A 90, 358 (1982) ADSCrossRefGoogle Scholar
  6. 6.
    V.N. Brudnyi, T.V. Vedernikova, Russian Phys. J. 50, 756 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    X.H. Sun, T.K. Sham, R.A. Rosenberg, G.K. Shenoy, J. Phys. Chem. C 111, 8475 (2007) CrossRefGoogle Scholar
  8. 8.
    L. Shengqing, C. Shun, H. Wei, C. Hao, L. Hanlan, Spectrochim. Acta Part B 64, 666 (2009) CrossRefGoogle Scholar
  9. 9.
    A.G. Shenstone, J.T. Pittenger, J. Opt. Soc. Am. 39, 219 (1949) ADSCrossRefGoogle Scholar
  10. 10.
    Th.A.M. van Kleef, Y.N. Joshi, P. Uijlings, Phys. Scr. 22, 353 (1980) ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Gibbs, H.E. White, Phys. Rev. 31, 776 (1928) ADSCrossRefGoogle Scholar
  12. 12.
    M. Green, Phys. Rev. 60, 117 (1941) ADSCrossRefGoogle Scholar
  13. 13.
    Y.N. Joshi, Th.A.M. van Kleef, M. Mazzoni, Can. J. Phys. 58, 737 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    A.N. Ryabtsev, R.R. Kildiyarova, Y.N. Joshi, Phys. Scr. 47, 59 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    NIST, Atomic Spectra Database Lines (wavelength order), http://www.physics.nist.gov (2011)
  16. 16.
    A.N. Zaidelj, V.K. Prokofjev, S.M. Raijskij, V.A. Slavnjij, E.Y. Shrejder, Spectral Line Tables (in Russian) (Nauka, Moscow, 1977) Google Scholar
  17. 17.
    V. Milosavljević, S. Djeniže, Eur. Phys. J. D 15, 99 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    S. Djeniže, V. Milosavljević, M.S. Dimitrijević, Eur. Phys. J. D 27, 209 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    S. Djeniže, Spectrochim. Acta Part B 62, 403 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    S. Bukvić, S. Djeniže, A. Srećković, Z. Nikolić, Phys. Lett. A 31, 2750 (2009) CrossRefGoogle Scholar
  21. 21.
    W. Rogowski, W. Steinhaus, Archiv für Elektrotechnik 1, 141 (1912) CrossRefGoogle Scholar
  22. 22.
    T.L. Pittman, C. Fleurier, Phys. Rev. A 33, 1291 (1986) ADSCrossRefGoogle Scholar
  23. 23.
    H.R. Griem, Plasma Spectroscopy (McGraw Hill, New York, 1964) Google Scholar
  24. 24.
    R.I. Kurucz, Atomic Spectral Line Database from CD-Rom 23, http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html (2011)
  25. 25.
    A.A. Kruithof, F.M. Penning, Physica 4, 430 (1937) ADSCrossRefGoogle Scholar
  26. 26.
    V.S. Aleijnikov, V.V. Ushakov, Opt. Spektrosk. (in Russian) 33, 214 (1972) Google Scholar
  27. 27.
    V.A. Kartazaev, N.A. Tolmachev, Opt. Spektrosk. (in Russian) 45, 648 (1978) Google Scholar
  28. 28.
    G.J. Collins, J. Appl. Phys. 44, 4633 (1973) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhao, G. Horlick, Spectrochim. Acta Part B 61, 660 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    W.T. Silfvast, Phys. Rev. Lett. 27, 1489 (1971) ADSCrossRefGoogle Scholar
  31. 31.
    N.M. Shaikh, B. Rashid, S. Hafeez, S. Mahmood, M. Saleem, M.A. Baig, J. Appl. Phys. 100, 073102 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    N.M. Shaikh, S. Hafeez, M.A. Baig, Spectrochim. Acta Part B 62, 1311 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    H.R. Griem, Spectral Line Broadening by Plasmas (Acad. Press, New York, 1974) Google Scholar
  34. 34.
    J.T. Davies, J.M. Vaughan, Astrophys. J. 137, 1302 (1963) ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    S. Bukvić, Dj. Spasojević, Spectrochim. Acta Part B 60, 1308 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    S. Bukvić, Dj. Spasojevoć, V. Žigman, A&A 477, 967 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    H.G. Kuhn, S.A. Ramsden, Proc. R. Soc. London A 237, 485 (1956) ADSCrossRefGoogle Scholar
  38. 38.
    A. Lesage, New Astron. Rev. 52, 471 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations