Advertisement

The European Physical Journal D

, Volume 63, Issue 1, pp 111–122 | Cite as

Structural, electronic and magnetic properties of AunPt (n = 1−12) clusters in comparison with corresponding pure Aun+1 (n = 1−12) clusters

  • X. J. KuangEmail author
  • X. Q. Wang
  • G. B. Liu
Clusters and Nanostructures Regular Article

Abstract

An all-electron scalar relativistic calculation on Au n Pt (n = 1−12) clusters has been performed by using density functional theory with the generalized gradient approximation at PW91 level. Our results reveal that all the lowest energy geometries of Au n Pt  (n = 1−12) clusters may be generated by substituting Pt atom for one gold atom of the Au n+1 cluster at the highest coordinated site. Compared with corresponding pure Au n+1 cluster, the lowest energy geometries of Au n Pt clusters are distorted slightly and still keep the planar structures due to the strong scalar relativistic effect in small gold cluster. The Au-Pt bonds are stronger and most Au-Au bonds far from Pt atom are weaker than the corresponding Au-Au bonds in pure Au n+1 cluster. By substituting Pt atom for one gold atom of Au n+1 cluster at the highest coordinated site, the relatively stable and inactive odd-numbered Au n+1 cluster becomes the relatively unstable and reactive odd-numbered Au n Pt cluster, and the relatively unstable and reactive even-numbered Au n+1 cluster becomes the relatively stable and inactive even-numbered Au n Pt  cluster chemically and electronically. All the Au n Pt clusters prefer low spin multiplicity. The even-numbered Au n Pt clusters are found to exhibit zero magnetic moment and the odd-numbered Au n Pt clusters are found to possess magnetic moment with the value of 1 μ B. The odd-even alterations of magnetic moments and electronic configurations for Au n Pt clusters are very obvious and may be simply understood in terms of the electron pairing effect.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Gold Cluster Gold Atom Lower Energy Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xu, C. Xu, T. Zhou, C. Cheng, J. Mol. Struct. Theochem 893, 88 (2009)Google Scholar
  2. 2.
    D.W. Yuan, X.G. Gong, R.Q. Wu, Phys. Rev. B 78, 035441 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Graciani, J. Oviedo, J.F. Sanz, J. Phys. Chem. B 110, 11600 (2006)CrossRefGoogle Scholar
  5. 5.
    X. Li, B. Kiran, L.F. Cui, L.S. Wan, Phys. Rev. Lett. 95, 253401 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M.B. Torres, E.M. Fernandez, L.C. Balbas, Phys. Rev. B 71, 155412 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    C. Mihut, C. Descorme, D. Duprez, M.D. Amiridis, J. Catal. 212, 125 (2002)CrossRefGoogle Scholar
  10. 10.
    D. Bazin, C. Mottet, G. Tréglia, Appl. Catal. A 200, 47 (2000)CrossRefGoogle Scholar
  11. 11.
    X. Li, A.E. Kuznetsov, H.F. Zhang, A.I. Boldyrev, L.S. Wang, Science 291, 859 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S. Shetty, S. Pal, D.G. Kanhere, J. Chem. Phys. 118, 7288 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, J. Phys. Chem. B 106, 8714 (2002)CrossRefGoogle Scholar
  14. 14.
    K. Koszinowski, D. Schroder, H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003)CrossRefGoogle Scholar
  15. 15.
    K. Koszinowski, D. Schroder, H. Schwarz, Organometallics 23, 1132 (2004)CrossRefGoogle Scholar
  16. 16.
    K. Koszinowski, D. Schroder, H. Schwarz, J. Am. Chem. Soc. 125, 3676 (2003)CrossRefGoogle Scholar
  17. 17.
    H. Hakkinen, Chem. Soc. Rev. 37, 1847 (2008)CrossRefGoogle Scholar
  18. 18.
    O.Ü. Aktürk, O. Gülseren, M. Tomak, Int. J. Mod. Phys. B 23, 5819 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Dong, M. Springborg, J. Phys. Chem. C 111, 12528 (2007)CrossRefGoogle Scholar
  20. 20.
    G.J. Jun, Y.J. Xian, D. Dong, J. Mol. Struct. Theochem 764, 117 (2006)CrossRefGoogle Scholar
  21. 21.
    L. Xiao, L. Wang, J. Phys. Chem. A 108, 8605 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Prestianni, A. Martorana, F. Labat, I. Ciofini, C. Adamo, J. Phys. Chem. B 110, 12240 (2006)CrossRefGoogle Scholar
  23. 23.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J. Wei, E. Iglesia, J. Phys. Chem. B 108, 4094 (2004)CrossRefGoogle Scholar
  25. 25.
    S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dollmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Science 300, 1130 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    B.D. Chandler, A.B. Schobel, L.H. Pignolet, J. Catal. 193, 186 (2000)CrossRefGoogle Scholar
  28. 28.
    C. Song, Q. Ge, L. Wang, J. Phys. Chem. B 109, 22341 (2005)CrossRefGoogle Scholar
  29. 29.
    A.M. Joshi, M.H. Tucker, W.N. Delgass, K.T. Thomsond, J. Chem. Phys. 125, 194707 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Sadek, L. Wang, J. Phys. Chem. A 110, 14036 (2006)CrossRefGoogle Scholar
  31. 31.
    L. Wang, Chem. Phys. Lett. 443, 304 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    C. Song, Q. Ge, L. Wang, J. Phys. Chem. 109, 22341 (2005)CrossRefGoogle Scholar
  33. 33.
    D. Mott, J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Catal. Today 122, 378 (2007)CrossRefGoogle Scholar
  34. 34.
    C. Mihut, C. Descorne, D. Duprez, M.D. Amiridis, J. Catal. 212, 125 (2002)CrossRefGoogle Scholar
  35. 35.
    J. Luo, M.M. Maye, N.N. Kariuki, L. Wang, P. Njoki, Y. Lin, M. Schadt, H.R. Naslund, C.J. Zhong, Catal. Today 99, 291 (2005)CrossRefGoogle Scholar
  36. 36.
    Y. Luo, M.M. Maye, L. Han, J. Luo, C.J. Zhong, Chem. Commun. 473, 21 (2001)Google Scholar
  37. 37.
    W.Q. Tian, M. Ge, F. Gu, T. Yamada, Y. Aoki, J. Phys. Chem. A 110, 6285 (2006)CrossRefGoogle Scholar
  38. 38.
    H.M. Chen, H.C. Peng, R.S. Liu, S.F. Hu, L.-Y. Jang, Chem. Phys. Lett. 420, 484 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    K. Koszinowski, D. Schröder, H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003)CrossRefGoogle Scholar
  40. 40.
    D. Mott, J. Luo, A. Smith, P.N. Njoki, L. Wang, C.J. Zhong, Nano. Res. Lett. 2, 12 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Li, Y. Zhanga, C. Pengc, Solid State Commun. 149, 952 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    H. Tada, F. Suzuki, S. Ito, T. Kawahara, T. Akita, K. Tanaka, H. Kobayashi, Chem. Phys. Chem. 7, 1439 (2002)Google Scholar
  44. 44.
    J.B. Park, S.F. Conner, D.A. Chen, J. Phys. Chem. C 112, 5490 (2008)CrossRefGoogle Scholar
  45. 45.
    J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L. Wang, P. Njoki, D. Mott, Y. Lin, C.J. Zhong, Chem. Mater. 17, 3086 (2005)CrossRefGoogle Scholar
  46. 46.
    E. Bus, J.A. van Bokhoven, J. Phys. Chem. C 111, 9761 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Electrochem. Commun. 8, 581 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    P.N. Njoki, J. Luo, L. Wang, M.M. Maye, H. Quaizar, C.J. Zhong, Langmuir 21, 1623 (2005)CrossRefGoogle Scholar
  49. 49.
    W.Q. Tian, M.F. Ge, F.L. Gu, T. Yamada, Y. Aoki, J. Phys. Chem. A 110, 6285 (2006)CrossRefGoogle Scholar
  50. 50.
    J.J. Guo, J.X. Yang, D. Dong, J. Mol. Struct. Theochem 764, 117 (2006)CrossRefGoogle Scholar
  51. 51.
    D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    O. Olvera-Neria, A. Cruz, H. Luna-García, A. Anguiano-García, E. Poulain, S. Castillo, J. Chem. Phys. 123, 164302 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    D. Dai, K. Balasubramanian, J. Chem. Phys. 100, 4401 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    Q. Ge, C. Song, L. Wang, Comput. Mater. Sci. 35, 247 (2006)CrossRefGoogle Scholar
  55. 55.
    O.Ü. Aktürk, M. Tomak, Phys. Rev. B 80, 085417 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    O.Ü. Aktürk, M. Tomak, Thin. Solid. Films. 518, 5195 (2010)CrossRefADSGoogle Scholar
  57. 57.
    A.M. Joshi, M.H. Tucker, W.N. Delgass, K.T. Thomson, J. Chem. Phys. 125, 194707 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    S.N. Datta, C.S. Ewig, J.R. Van Wazer, Chem. Phys. Lett. 57, 83 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    Y.S. Lee, W.C. Ermler, K.S. Pitzer, J. Chem. Phys. 67, 5861 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    P.K. Jain, Struct. Chem. 16, 421 (2005)CrossRefGoogle Scholar
  61. 61.
    S. Gilb, P. Weis, F. Furche, P. Ahlrichs, M. Kappes. J. Chem. Phys. 116, 4094 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    X.J. Kuang, X.Q. Wang, G.B. Liu, Catal. Lett. 137, 247 (2010)CrossRefGoogle Scholar
  63. 63.
    X.J. Kuang, X.Q. Wang, G.B. Liu, Indian J. Phys. 84, 245 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    E.M. Fernandez, J.M. Soler, L.L. Garzon, C. Balbas, Phys. Rev. B 70, 165403 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    R. Wesendrup, T. Hunt, P. Schwerdtfeger, J. Chem. Phys. 112, 9356 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    J. Autschbach, S. Siekierski, M. Seth, P. Schwerdtfeger, W.H.E. Schwarz, J. Comput. Chem. 23, 804 (2002)CrossRefGoogle Scholar
  67. 67.
    B. Delley, J. Chem. Phys. 92, 508 (1990)ADSCrossRefGoogle Scholar
  68. 68.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  70. 70.
    B. Delley, Phys. Rev. B 66, 155125 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    A. Deka, R.C. Deka, J. Mol. Struct. Theochem 870, 83 (2008)CrossRefGoogle Scholar
  72. 72.
    H.P. Mao, H.Y. Wang, Y. Ni, G.L. Xu, Acta Physica Sinica 53, 1766 (2004)Google Scholar
  73. 73.
    E.M. Fernandez, J.M. Soler, L.L. Garzon, C. Balbas, Phys. Rev. B 70, 165403 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    H. Myoung, M. Ge, B.R. Sahu, P. Tarakeswar, K.S. Kim, J. Chem. Phys. 107, 9994 (2003)CrossRefGoogle Scholar
  75. 75.
    H. Hakkinen, U. Landman, Phys. Rev. B 62, 2287 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    B. Simard, P.A. Hackett, J. Mol. Spectrosc. 142, 310 (1990)ADSCrossRefGoogle Scholar
  77. 77.
    S. Taylor, G.W. Lemire, Y.M. Hamrick, Z. Fu, M.D. Morse, J. Chem. Phys. 89, 5517 (1988)ADSCrossRefGoogle Scholar
  78. 78.
    B.A. Marc, M.D. Morse, J. Chem. Phys. 116, 1313 (2002)ADSCrossRefGoogle Scholar
  79. 79.
    C.C. Wang, R.N. Zhao, J.G. Han, J. Chem. Phys. 124, 194301 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Rev. B 71, 155412 (2006)CrossRefGoogle Scholar
  82. 82.
    C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    M.E. Eberhart, R.C. Handley, K.H. Johnson, Phys. Rev. B 29, 1097 (1984)ADSCrossRefGoogle Scholar
  85. 85.
    J.L. Yang, F. Toigo, K.L. Wang, Phys. Rev. B 50, 7915 (1994)CrossRefGoogle Scholar
  86. 86.
    K. Yamaguchi, Self-consistent Field Theory and Applications, edited by R. Carbo, M. Klobukowski (Elsevier, Amsterdam, 1990), p. 727Google Scholar
  87. 87.
    A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Dover Publications, Inc., New York, 1996), Chap. 3, pp. 205−230Google Scholar
  88. 88.
    K. Yamaguchi, T. Kawakami, Y. Takano, Y. Kitagawa, Y. Yamashita, H. Fujita, Int. J. Quant. Chem. 90, 370 (2002)CrossRefGoogle Scholar
  89. 89.
    B. Hajgató, D. Szieberth, P. Geerlings, F. De Proft, M.S. Deleuze, J. Chem. Phys. 131, 224321 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    M. Okumura, Y. Kitagawa, H. Yabushita, T. Saito, T. Kawakami, Catal. Today 143, 282 (2009)CrossRefGoogle Scholar
  91. 91.
    T.G. Williams, N.J. DeYonker, B.S. Ho, A.K. Wilson, Chem. Phys. Lett. 504, 88 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    M. Bendikov, H.M. Duong, K. Starkey, K.N. Houk, E.A. Carter, F. Wudl, J. Am. Chem. Soc. 126, 7416 (2004)CrossRefGoogle Scholar
  93. 93.
    K. Yamaguchi, Y. Takahara, T. Fueno, K.N. Houk, Theor. Chim. Acta 73, 337 (1988)CrossRefGoogle Scholar
  94. 94.
    S. Yamanaka, M. Okumura, M. Nakano, K. Yamaguchi, J. Mol. Struct. Theochem 310, 205 (1994)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.College of Physics, Chongqing UniversityChongqingP.R. China
  2. 2.School of Science, Southwest University of Science and TechnologySichuanP.R. China

Personalised recommendations