Advertisement

The European Physical Journal D

, Volume 63, Issue 1, pp 149–155 | Cite as

Structural properties of a TM polarized Gaussian beam in the far-field

  • G. Q. ZhouEmail author
Optical Phenomena and Photonics Regular Article
  • 74 Downloads

Abstract

In the far-field, the TM polarized Gaussian beam is just a sum of two orthogonal terms: the TE and the TM terms. The analytical expressions for the ratios of the powers of the TE and the TM terms to that of the TM polarized Gaussian beam are obtained without any approximation. The contributions of the powers of the TE and TM terms to the power of the TM polarized Gaussian beam only depend on the f-parameter. The analytical divergence angles of the TE term, the TM term, and the TM polarized Gaussian beam are derived. The formulae of the kurtosis parameters of the TE term, the TM term, and the TM polarized Gaussian beam are also presented. The divergence angles and the kurtosis parameters are only determined by the f-parameter. Relations among the divergence angles and the kurtosis parameters of the TE term, the TM term, and the TM polarized Gaussian beam are presented, respectively. The influence of the f-parameter on the ratios of the powers of the TE and the TM terms to the power of the TM polarized Gaussian beam, the far-field divergence angles, and the kurtosis parameters are numerically analyzed.

Keywords

Gaussian Beam Divergence Angle Contour Graph Kurtosis Parameter Beam Propagation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Varga, P. Török, Opt. Lett. 21, 1523 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    P. Varga, P. Török, Opt. Commun. 152, 108 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    G. Zhou, X. Chu, L. Zhao, Opt. Laser Technol. 37, 470 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    G. Zhou, S. Wang, Proc. SPIE 5635, 57 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    G. Zhou, J. Mod. Opt. 56, 910 (2009)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    G. Zhou, L. Chen, Y. Ni, Opt. Laser Technol. 39, 1473 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    G. Zhou, Opt. Commun. 265, 39 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    R. Martinez-Herrero, G. Piquero, P.M. Mejias, Opt. Commun. 115, 225 (1995) ADSCrossRefGoogle Scholar
  9. 9.
    H. Mao, D. Zhao, F. Jing, H. Liu, X. Wei, J. Opt. Pure Appl. Opt. 6, 640 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H.T. Eyyuboglu, C. Arpali, Y.K. Baykal, Opt. Express 14, 4196 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products (Academic Press, New York, 1980) Google Scholar
  12. 12.
    B.D. Bock, Multivariate statistical method in behavioral research(McGraw-Hill, New York, 1975)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Sciences, Zhejiang A & F UniversityZhejiang ProvinceP.R. China

Personalised recommendations