Advertisement

The European Physical Journal D

, Volume 62, Issue 2, pp 297–307 | Cite as

‘Measurement of quantum mechanical operators’ revisited

  • L. Loveridge
  • P. BuschEmail author
Regular Article

Abstract

The Wigner-Araki-Yanase (WAY) theorem states a remarkable limitation to quantum mechanical measurements in the presence of additive conserved quantities. Discovered by Wigner in 1952, this limitation is known to induce constraints on the control of individual quantum systems in the context of information processing. It is therefore important to understand the precise conditions and scope of the WAY theorem. Here we elucidate its crucial assumptions, briefly review some generalizations, and show how a particular extension can be obtained by a simple modification of the original proofs. We also describe the evolution of the WAY theorem from a strict no-go verdict for certain, highly idealized, precise measurements into a quantitative constraint on the accuracy and approximate repeatability of imprecise measurements.

Keywords

Approximate Measurement Angular Momentum Conservation Repeatability Property Initial System State Large Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wigner, Z. Phys. 133, 101 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H. Araki, M.M. Yanase, Phys. Rev. 120, 622 (1960) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Wigner, Measurement of quantum mechanical operators. Translation of [1], http://Arxiv.org/abs/1012.4372
  4. 4.
    M. Ozawa, Phys. Rev. Lett. 88, 050402 (2002) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M.M. Yanase, Phys. Rev. 123, 666 (1961) ADSCrossRefGoogle Scholar
  6. 6.
    T. Ohira, P. Pearle, Am. J. Phys. 56, 692 (1988) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Shimony, H. Stein, The American Mathematical Monthly 86, 292 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Busch, P. Lahti, P. Mittelstaedt, The Quantum Theory of Measurement, 2nd. edn. (Springer, Berlin, 1991, 1996) Google Scholar
  9. 9.
    T. Miyadera, H. Imai, Phys. Rev. A 74, 024101 (2006) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    E.G. Beltrametti, G. Cassinelli, P.J. Lahti, J. Math. Phys. 31, 91 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    G.C. Ghirardi, A. Rimini, T. Weber, J. Math. Phys. 24, 2454 (1983) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G.C. Ghirardi, F. Miglietta, A. Rimini, T. Weber, Phys. Rev. D 24, 347 (1981) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    G.C. Ghirardi, F. Miglietta, A. Rimini, T. Weber, Phys. Rev. D 24, 353 (1981) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Ozawa, J. Math. Phys. 25, 79 (1984) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    E.B. Davies, J. Func. Anal. 6, 318 (1970) CrossRefGoogle Scholar
  16. 16.
    P. Busch, M. Grabowski, P. Lahti, Operational Quantum Physics (Springer, Berlin, 1995, 1997) Google Scholar
  17. 17.
    P. Busch, Int. J. Theor. Phys. 42, 5 (2003) CrossRefGoogle Scholar
  18. 18.
    P. Busch, L. Loveridge, Phys. Rev. Lett. 106, 110406 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    M. Ozawa, Phys. Rev. Lett. 89, 057902 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    T. Karasawa, J. Gea-Banacloche, M. Ozawa, J. Phys. A Math. Theor. 42, 225303 (2009) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes – Quantum Theory for the Perplexed (Wiley-VCH Verlag, Weinheim, Germany, 2005), Chap. 11 Google Scholar
  22. 22.
    S.D. Bartlett, T. Rudolph, R.W. Spekkens, Rev. Mod. Phys. 79, 555 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations