Advertisement

Ab initio study of spectroscopic properties of the calcium hydride molecular ion

  • H. Habli
  • H. GhallaEmail author
  • B. Oujia
  • F.X. Gadéa
Regular Article Molecular Physics and Chemical Physics

Abstract

In the present work, all adiabatic potential energy curves, spectroscopic constants and dipole moments of CaH+ molecular ion dissociating below the ionic limit Ca2+H are presented. These curves are determined by an ab initio approach involving a non-empirical pseudo-potential for the Ca core, core-valence correlation accounted in operator form with two types of core polarization potentials (CPP) and full valence Configuration Interaction. The molecule is thus treated as a two-electron system. The potential energy curves and the spectroscopic constants are presented. In addition, the permanent and transition dipole moments are calculated for most of the states and reveal the underlying ionic states. A rather good agreement with the available theoretical works in the literature is obtained for the spectroscopic constants of the lowest states of the CaH+ molecule.

Keywords

Vibrational Level Potential Energy Curve Transition Dipole Moment Charge Transfer State Ionic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.P. Snow, in Interstellar Molecules, Proceeding of the IAU Symposium, edited by B.H. Andrew (Reidel, Dordrecht, 1992), p. 247Google Scholar
  2. 2.
    L.E. Snyder, in Astrochemistry of Cosmic Phenomena, Proceedings of the IAU Symposium, edited by P.D. Singh (Kluwer Academic, Dordecht, 1992), p. 427Google Scholar
  3. 3.
    C. Arpigny, F. Dossin, J. Manfroid, P. Magain, A.C. Danks, D.L. Lambert, C. Sterken, The Messenger 45, 8 (1986)ADSGoogle Scholar
  4. 4.
    K. Sinha, Proc. Astron. Soc. Australia 9, 32 (1991)ADSGoogle Scholar
  5. 5.
    J. Dufay, in Introduction to Astrophysics: The Stars (Dover, New York, 1964), p. 142Google Scholar
  6. 6.
    E. Anders, N. Gresvesse, Geochim. Cosmochim. Acta 53, 197 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    C.W. Allen, in Astrophysical Quantities (Athlone, University of London, London, 1973), p. 37Google Scholar
  8. 8.
    K. Sinha, B.M. Tripathi, R.M. Atalla, P.D. Singh, Sol. Phys. 115, 221 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    N. Honlou, M. Tkagi, M. Makita, K. Ohno, J. Phys. Soc. Jpn 50, 2095 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    G. Jeung, J.D. Daudey, J.P. Malrieu, Chem. Phys. Lett. 98, 433 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    P. Fuentealba, O. Reyes, H. Stoll, H. Preuss, J. Chem. Phys. 87, 5338 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    L.G.H. Pettersson, P.E.M. Siegbahn, S. Ismail, Chem. Phys. 82, 355 (1983)CrossRefGoogle Scholar
  13. 13.
    G. Chambaud, B. Levy, J. Phys. B 22, 3155 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    B. Peart, J.G. Stevenson, K.T. Dolder, J. Phys. B 6, 146 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    I.C. Lyon, B. Peart, J.B. West, K. Dolder, J. Phys. B 19, 4137 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    F.J. Wuilleumier, D.J. Ederer, J.L. Picque, J. Mol. Phys. 23, 198 (1987)Google Scholar
  17. 17.
    F.J. Wuilleumier, J.M. Bizau, D. Cubaynes, M. Richter, Synchrotron Radiat. News 3, 10 (1990)Google Scholar
  18. 18.
    G. Miecznikt, K.A. Berrington, P.G. Burke, A. Hibbert, J. Phys. B At. Mol. Opt. Phys. 23, 3305 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    A. Boutalib, J.P. Daudey, M. El Mouhtadi, Chem. Phys. 167, 111 (1992)CrossRefGoogle Scholar
  20. 20.
    S. Canuto, A.C. Marcos, K. Sinha, Phys. Rev. A 48, 2461 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    T.S. Monteiro, G. Danby, I.L. Cooper, A.S. Dickinson, E.L. Lewis, J. Phys. B At. Mol. Opt. Phys. 21, 4165 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    M. Aymar, R. Guérout, M. Sahlaoui, O. Dulieu, J. Phys. B At. Mol. Opt. Phys. 42, 154025 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J.B. Schilling, W.A. Goddard III, J.L. Beauchamp, J. Am. Chem. Soc. 108, 4 (1986)CrossRefGoogle Scholar
  24. 24.
    Ph. Durand, J.C. Barthelat, J.P. Daudey, Theor. Chim. Acta 38, 283 (1975)CrossRefGoogle Scholar
  25. 25.
    J.C. Barthelat, Ph. Durand, Gazz. Chim. Ital. 108, 225 (1978)Google Scholar
  26. 26.
    B. Huron, J.P. Malrieu, P. Rancurel, J. Chem. Phys. 58, 5745 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    M. Pélissier, N. Komiha, J.P. Daudey, J. Comput. Chim. 9, 298 (1988)CrossRefGoogle Scholar
  28. 28.
    M. Foucrault, Ph. Millie, J.P. Daudey, J. Chem. Phys. 96, 1257 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    P. Duplaa, F. Spiegelmann, J. Chem. Phys. 105, 1492 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    M. Groß, F. Spiegelmann, Eur. Phys. J. D 4, 219 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    R. Poteau, F. Spiegelmann, J. Mol. Spectrosc. 171, 299 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    S. Evangelisti, J.P. Daudey, J.P. Malrieu, Chem. Phys. 75, 91 (1983)CrossRefGoogle Scholar
  33. 33.
    F.X. Gadea, M. Pelissier, J. Chem. Phys. 93, 545 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    A. Boutalib, F.X. Gadea, J. Chem. Phys. 97, 1144 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    H. Berriche, F.X. Gadea, Chem. Phys. Lett. 247, 85 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    W. Müller, J. Flesch, W. Meyer, J. Chem. Phys. 80, 3297 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    J. Mitroy, J.Y. Zhang, Eur. Phys. J. D 46, 415 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S. Magnier, Ph. Millié, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    W. Zrafi, B. Oujia, H. Berriche, F.X. Gadea, J. Mol. Struct. 777, 87 (2006)Google Scholar
  40. 40.
    NIST ASD Team, NIST Atomic Spectra National Institute of Standards and Technology, Gaithersburg, MD, USA (2008). [Online] Available: http://physics.nist.gov/PhysRefData/Handbook/Tables
  41. 41.
    C.L. Pekeris, Phys. Rev. 126, 1470 (1962)ADSCrossRefGoogle Scholar
  42. 42.
    F. Spiegelmann, private communicationGoogle Scholar
  43. 43.
    P. Fuentealba, O. Reyes, Mol. Phys. 62, 1291 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    R.H. McFarland, A.S. Schlachter, J.W. Stearns, B. Liu, R.E. Olson, Phys. Rev. A 26, 775 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    R.J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    S. Wilson, in Electron Correlation in Molecules (Clarendon, Oxford, 1984)Google Scholar
  47. 47.
    H. Croft, A.S. Dickinson, F.X. Gadea, J. Phys. B 32, 81 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    A.S. Dickinson, R. Poteau, F.X. Gadea, J. Phys. B 32, 5451 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    A.K. Belyaev, P.S. Barklem, A.S. Dickinson, F.X. Gadea, Phys. Rev. A 81, 032706 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    P.S. Barklem, A.K. Belyaev, A.S. Dickinson, F.X. Gadea, Astron. Astrophys. 519, A20 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    R. Hoffmann, J. Chem. Phys. 39, 1397 (1963)ADSCrossRefGoogle Scholar
  52. 52.
    F.X. Gadea, Phys. Rev. A 43, 1160 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire de Physique QuantiqueFaculté des Sciences de MonastirMonastirTunisia
  2. 2.Laboratoire de Chimie et Physique Quantique, UMR5626 du CNRSUniversité de Toulouse, UPSToulouse Cedex 4France

Personalised recommendations