Coherent control of interference processes in radiative decays

  • E. A. GazazyanEmail author
  • V. Chaltykyan
  • A. Gazazyan
Regular Article Quantum Optics


Possibility of coherent control of spontaneous emission from four- and five-level system in the laser radiation field is studied. The four-level system consists of two levels resonantly driven by laser radiation where either of levels may decay to a separate level. For such a system, we show that the presence of the second decay channel may deteriorate the destructive interference occurring in case of one decay channel because of Autler-Townes effect. The five-level diagram represents two two-level resonantly driven systems with the upper levels decaying to a common level. For this diagram, interference between the two decay channels takes place and it is partially or completely destructive or constructive depending on the initial conditions and on the mutual orientation of the transition dipole moments. It is shown that population transfer takes place by the same quantum vacuum via spontaneous emission. The populations are shown to have damping oscillatory nature.


Spontaneous Emission Decay Channel Destructive Interference Dark Line Quantum Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O.A. Alimov, V.P. Krainov, A.A. Mikheev, Laser Physics 4, 551 (1994)Google Scholar
  2. 2.
    A.D. Gazazyan, Laser Physics 5, 852 (1995)Google Scholar
  3. 3.
    Shi-Yao Zhu, L.M. Narducci, M.O. Scully, Phys. Rev. A 52, 4791 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    A. Imamoglu, Phys. Rev. A 40, 2835 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Shi-Yao Zhu, M.O. Scully, Phys. Rev. Lett. 76, 388 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    C.H. Keitel, P.L. Knight, L.M. Narducci, M.O. Scully, Opt. Commun. 118, 143 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    E. Paspalakis, D.G. Angelakis, P.L. Knight, Opt. Commun. 172, 229 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    E. Paspalakis, N.J. Kylstra, P.L. Knight, Phys. Rev. A 60, R33 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    E. Paspalakis, P.L. Knight, Phys. Rev. Lett. 81, 293 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    E. Paspalakis, C.H. Keitel, P.L. Knight, Phys. Rev. A 58, 4868 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Shi-Yao Zhu, R.C.F. Chan, Chin Pang Lee, Phys. Rev. A 52, 710 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Patnaik, G.S. Agarwal, J. Mod. Opt. 45, 2131 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    G.S. Agarwal, A.K. Patnaik, Phys. Rev. A 63, 043805 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    V. Weisskopf, E. Vigner, Z. Phys. 63, 54 (1930)ADSCrossRefGoogle Scholar
  15. 15.
    V. Weisskopf, E. Vigner, Z. Phys. 65, 18 (1931)ADSGoogle Scholar
  16. 16.
    U. Fano, Phys. Rev. 124, 1866 (1961)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    P.L. Knight, M.A. Lauder, B.J. Dalton, Phys. Rep. 190, 1 (1990)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Physical Research, NAS of ArmeniaAshtarakArmenia

Personalised recommendations