Advertisement

The European Physical Journal D

, Volume 62, Issue 2, pp 205–211 | Cite as

Hyperpolarizability of hydrogen atom under spherically confined Debye plasma

  • J. K. Saha
  • T. K. Mukherjee
  • P. K. MukherjeeEmail author
  • B. Fricke
Regular Article

Abstract

Systematic analysis of the effect of Debye plasma on the hyperpolarizability of spherically confined hydrogen atom has been studied in detail for the first time to understand the behavior of non linear optical properties of atoms under such confinements. Variation perturbation theory is used for such studies. Hyperpolarizability values are enhanced considerably under increased plasma strength while it is found to diminish with decreasing radius of spatial confinement. The present results without plasma screening are in good agreement with existing theoretical data.

Keywords

Screening Parameter Orthogonality Constraint Plasma Screening Linear Optical Property Debye Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Waller, Z. Phys. 38, 635 (1926) ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Coulson, Proc. Roy. Soc. A (Edinberg) 61, 20 (1941) Google Scholar
  3. 3.
    G.L. Sewell, Proc. Camb. Phil. Soc. 45, 678 (1949) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    L.L. Boyle, A.D. Buckingham, R.L. Disch, D.A. Dunmar, J. Chem. Phys. 45, 1318 (1966) ADSCrossRefGoogle Scholar
  5. 5.
    T.M. Miller, B. Bederson, Adv. At. Mol. Phys. 13, (1977) Google Scholar
  6. 6.
    L.L. Boyle, C.A. Coulson, Mol. Phys. 11, 165 (1966) ADSCrossRefGoogle Scholar
  7. 7.
    L.L. Boyle, C.A. Coulson, Mol. Phys. 13, 97 (1967) ADSCrossRefGoogle Scholar
  8. 8.
    M. Jaszunski, B.O. Roos, Mol. Phys. 52, 1209 (1984) ADSCrossRefGoogle Scholar
  9. 9.
    D.P. Shelton, J. Chem. Phys. 84, 404 (1986) ADSCrossRefGoogle Scholar
  10. 10.
    D.P. Shelton, Phys. Rev. A 36, 3032 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    Y.R. Shen, Principles of Nonlinear Optics (Wiley, 1984) Google Scholar
  12. 12.
    J. Mizuno, J. Phys. B 5, 1149 (1972) ADSCrossRefGoogle Scholar
  13. 13.
    D.M. Bishop, J. Pipin, Phys. Rev. A 36, 2171 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    M.N. Grasso, K.T. Chung, R.P. Hurst, Phys. Rev. 167, 1 (1968) ADSCrossRefGoogle Scholar
  15. 15.
    H.P. Roy, A.K. Bhattacharya, Mol. Phys. 31, 649 (1976) ADSCrossRefGoogle Scholar
  16. 16.
    G.W.F. Drake, M. Cohen, J. Chem. Phys. 48, 1168 (1968) ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Sitter Jr., R.P. Hurst, Phys. Rev. A 5, 5 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937) ADSCrossRefGoogle Scholar
  19. 19.
    A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938) zbMATHCrossRefGoogle Scholar
  20. 20.
    J.C.A. Boeyens, J. Chem. Soc. Faraday Trans. 90, 3377 (1944) CrossRefGoogle Scholar
  21. 21.
    E. Lee Koo, S. Rubinstein, J. Chem. Phys. 71, 351 (1979) ADSCrossRefGoogle Scholar
  22. 22.
    Y.P. Varshni, J. Phys. B At. Mol. Opt. Phys. 31, 2849 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    Y.S. Huang, C.C. Yang, S.S. Liaw, Phys. Rev. A 60, 85 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quantum Chem. 58, 115 (2009) CrossRefGoogle Scholar
  25. 25.
    S. Cruz. (Ed.), Adv. Quantum Chem. 59 (2010) Google Scholar
  26. 26.
    J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, J. Phys. B At. Mol. Opt. Phys. 33, 251 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    P. Debye, E. Hückel, Z. Phys. 24, 185 (1923) Google Scholar
  28. 28.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982) ADSCrossRefGoogle Scholar
  29. 29.
    T. Guillot, Planet. Space Sci. 47, 1183 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    C. Hollenstein, Plasma Phys. Control. Fusion 42, 93 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    H.R. Griem, Plasma Spectroscopy (Mc-Graw Hill, N.Y., 1964) Google Scholar
  32. 32.
    T.C. Killan, T. Pattard, T. Pohl, J.M. Rost, Phys. Rep. 449, 77 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    H.M. Van Horn, Science 252, 384 (1991) ADSCrossRefGoogle Scholar
  34. 34.
    B. Saha, P.K. Mukherjee, G.H.F. Diercksen, A&A 396, 337 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    H.E. Montgomery, Chem. Phys. Lett. 352, 529 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    B. Saha, T.K. Mukherjee, P.K. Mukherjee, G.H.F. Diercksen, Theor. Chem. Acc. 108, 305 (2002) Google Scholar
  37. 37.
    B. Saha, P.K. Mukherjee, D. Bielinska Waz, J. Karwowski, J. Quant. Specrosc. Radiat. Transfer 78, 131 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    B. Saha, P.K. Mukherjee, D. Bielinska Waz, J. Karwowski, J. Quant. Specrosc. Radiat. Transfer 92, 1 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    A.N. Sil, M. Pawlak, P.K. Mukherjee, M. Bylicki, J. Quant. Specrosc. Radiat. Transfer 109, 873 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    A. Banerjee, K.D. Sen, J. Garza, R. Vargas, J. Chem. Phys. 116, 4054 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, P.K. Mukherjee, J. Phys. B At. Mol. Opt. Phys. 42, 245701 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. K. Saha
    • 1
  • T. K. Mukherjee
    • 1
  • P. K. Mukherjee
    • 2
    • 3
    Email author
  • B. Fricke
    • 4
  1. 1.Narula Institute of TechnologyKolkataIndia
  2. 2.Department of PhysicsRamakrishna Mission Vivekananda UniversityWest BengalIndia
  3. 3.Department of MathematicsWest BengalIndia
  4. 4.Institut für PhysikUniversität KasselKasselGermany

Personalised recommendations