Advertisement

The European Physical Journal D

, Volume 62, Issue 2, pp 191–195 | Cite as

Relaxation of green fluorescent protein chromophore anion observed by photodissociation in an electrostatic storage ring

  • T. TanabeEmail author
  • M. Saito
  • K. Noda
Regular Article

Abstract

The gas-phase absorption properties of the green fluorescent protein chromophore anion were studied using an electrostatic storage ring. The time sequence of neutral particles produced by photodissociation was detected following laser irradiation. The lifetimes of the photo-absorbed ions depended on their storage time in an ion trap before injection into the storage ring. The lifetime increased with the storage time and saturated, indicating a change in the population of rovibrationally excited states with respect to the storage time. Photodissociation neutral spectrum of the relaxed ions measured as a function of the laser wavelength was characterized by a narrow asymmetric shape, which was in good agreement with the photo fragment ion action spectrum reported recently.

Keywords

Storage Time Storage Ring Neutral Particle Optical Parametric Oscillator Electron Detachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Shimomura, F.H. Johnson, Y. Saiga, J. Cell. Comp. Physiol. 59, 223 (1962) CrossRefGoogle Scholar
  2. 2.
    A.A. Voityuk, M.-E. Michel-Beyerle, N. Rösch, Chem. Phys. Lett. 272, 162 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Voityuk, M.-E. Michel-Beyerle, N. Rösch, Chem. Phys. 231, 13 (1998) CrossRefGoogle Scholar
  4. 4.
    R.Y. Tsien, Annu. Rev. Biochem. 67, 509 (1998) CrossRefGoogle Scholar
  5. 5.
    W. Weber, V. Helms, J.A. McCammon, P.W. Langhoff, Proc. Natl. Acad. Sci. USA 96, 6177 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Yazal, F.G. Prendergast, D.E. Shaw, Y.-P. Pang, J. Am. Chem. Soc. 122, 11411 (2000) CrossRefGoogle Scholar
  7. 7.
    A.F. Bell, X. He, R.M. Wachter, P.J. Tonge, Biochemistry 39, 4423 (2000) CrossRefGoogle Scholar
  8. 8.
    A.A. Voityuk, A.D. Kummer, M.-E. Michel-Beyerle, N. Rösch, Chem. Phys. 269, 83 (2001) CrossRefGoogle Scholar
  9. 9.
    N.M. Webber, K.L. Litvinenko, S.R. Meech, J. Phys. Chem. B 105, 8036 (2001) CrossRefGoogle Scholar
  10. 10.
    H.-Y. Yoo, J.A. Boatz, V. Helms, J.A. McCammon, P.W. Langhoff, J. Phys. Chem. B 105, 2850 (2001) CrossRefGoogle Scholar
  11. 11.
    S.B. Nielsen, A. Lapierre, J.U. Andersen, U.V. Pedersen, S. Tomita, L.H. Andersen, Phys. Rev. Lett. 87, 228102 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    L.H. Andersen, A. Lapierre, S.B. Nielsen, I.B. Nielsen, S.U. Pedersen, U.V. Pedersen, S. Tomita, Eur. Phys. J. D 20, 597 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    S. Boyé, I.B. Nielsen, S.B. Nielsen, H. Krogh, A. Lapierre, H.B. Pedersen, S.U. Pedersen, U.V. Pedersen, L.H. Andersen, J. Chem. Phys. 119, 338 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    S. Boyé, H. Krogh, I.B. Nielsen, S.B. Nielsen, S.U. Pedersen, U.V. Pedersen, L.H. Andersen, A.F. Bell, X. He, P.J. Tonge, Phys. Rev. Lett. 90, 118103 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    L.H. Andersen, H. Bluhme, S. Boyé, T.J.D. Jørgensen, H. Krogh, I.B. Nielsen, S.B. Nielsen, A. Svendsen, Phys. Chem. Chem. Phys. 6, 2617 (2004) CrossRefGoogle Scholar
  16. 16.
    I.B. Nielsen, S. Boyé-Péronne, M.O.A.E. Ghazaly, M.B. Kristensen, S.B. Nielsen, L.H. Andersen, Biophys. J. 89, 2597 (2005) CrossRefGoogle Scholar
  17. 17.
    L. Lammich, M.Å. Petersen, M.B. Nielsen, L.H. Andersen, Biophys. J. 92, 201 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    L.H. Andersen, A.V. Bochenkova, Eur. Phys. J. D 51, 5 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M.W. Forbes, R.A. Jockusch, J. Am. Chem. Soc. 131, 17038 (2009) CrossRefGoogle Scholar
  20. 20.
    T. Tanabe, K. Chida, K. Noda, I. Watanabe, Nucl. Instrum. Methods 482, 595 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    T. Tanabe, K. Noda, Nucl. Instrum. Methods 496, 233 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.National Institute of Radiological SciencesChibaJapan
  3. 3.Kyoto Prefectural UniversityKyotoJapan

Personalised recommendations