Advertisement

The European Physical Journal D

, Volume 63, Issue 2, pp 209–214 | Cite as

High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton

  • H. Schöbel
  • P. Bartl
  • C. Leidlmair
  • S. Denifl
  • O. EchtEmail author
  • T. D. Märk
  • P. Scheier
Topical issue: ISSPIC 15 - Structure and thermodynamics of clusters and nanoalloys Regular Article

Abstract

Mass spectra of doped and undoped helium droplets are presented. The high resolution of the time-of-flight spectrometer (m/Δm ≅ 5000) makes it possible to fully resolve small helium cluster ions from impurities and to unambiguously identify abundance anomalies in the size distribution of He n +. The yield of He4 + shows the well-known enhancement relative to other small cluster ions when the expansion changes from sub- to supercritical, provided the electron energy exceeds a value of 40 ± 1 eV, the threshold for formation of electronically excited ions. Upon doping with krypton, pure Kr n + cluster ions containing up to 41 Kr atoms are observed. The spectra exhibit abundance anomalies at 13, 16, 19, 22 & 23, 26 and 29, in agreement with spectra obtained by ionization of bare krypton clusters that are formed in neat supersonic beams. Mixed clusters He m Kr+ indicate closure of a solvation shell at m = 12.

Keywords

Krypton Rydberg State Appearance Energy Semilogarithmic Scale Rydberg Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gspann, H. Vollmar, J. Chem. Phys. 73, 1657 (1980) ADSCrossRefGoogle Scholar
  2. 2.
    S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    M. Farnik, J. Toennies, J. Chem. Phys. 122, 014307 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004) CrossRefGoogle Scholar
  5. 5.
    H. Buchenau, J.P. Toennies, J. Northby, J. Chem. Phys. 95, 8134 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    B. von Issendorff, H. Haberland, R. Fröchtenicht, J.P. Toennies, Chem. Phys. Lett. 233, 23 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    S.D. Bosanac, J.N. Murrell, Chem. Phys. Lett. 291, 64 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    F. Marinetti, E. Bodo, F.A. Gianturco, E. Yurtsever, Chem. Phys. Chem. 9, 2618 (2008) CrossRefGoogle Scholar
  9. 9.
    V.F. Elesin, N.N. Degtyarenko, N.V. Matveev, A.I. Podlivaev, L.A. Openov, J. Exp. Theor. Phys. 101, 44 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    K.D. Closser, M. Head-Gordon, J. Phys. Chem. A 114, 8023 (2010) CrossRefGoogle Scholar
  11. 11.
    A. Golov, S. Sekatskii, Z. Phys. D 27, 349 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Moller, J. Phys. B 38, S373 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Worsnop, S.J. Buelow, D.R. Herschbach, J. Phys. Chem. 88, 4506 (1984) CrossRefGoogle Scholar
  14. 14.
    M. Lezius, P. Scheier, A. Stamatovic, T.D. Mark, J. Chem. Phys. 91, 3240 (1989) ADSCrossRefGoogle Scholar
  15. 15.
    W. Miehle, O. Kandler, T. Leisner, O. Echt, J. Chem. Phys. 91, 5940 (1989) ADSCrossRefGoogle Scholar
  16. 16.
    P.G. Lethbridge, A.J. Stace, J. Chem. Phys. 91, 7685 (1989) ADSCrossRefGoogle Scholar
  17. 17.
    F. Ferreira da Silva, P. Bartl, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Phys. Chem. Chem. Phys. 11, 9791 (2009) CrossRefGoogle Scholar
  18. 18.
    P.W. Stephens, J.G. King, Phys. Rev. Lett. 51, 1538 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    B.E. Callicoatt, K. Förde, L.F. Jung, T. Ruchti, K.C. Janda, J. Chem. Phys. 109, 10195 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    S. Feil, K. Gluch, O. Echt, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 252, 166 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    D.S. Peterka, J.H. Kim, C.C. Wang, L. Poisson, D.M. Neumark, J. Phys. Chem. A 111, 7449 (2007) CrossRefGoogle Scholar
  22. 22.
    O. Kandler, T. Leisner, O. Echt, E. Recknagel, Z. Phys. D 10, 295 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    O. Echt, O. Kandler, T. Leisner, W. Miehle, E. Recknagel, J. Chem. Soc. Faraday Trans. 86, 2411 (1990) CrossRefGoogle Scholar
  24. 24.
    S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    D.A. Arms, R.O. Simmons, M. Schwoerer-Bohning, A.T. Macrander, T.J. Graber, Phys. Rev. Lett. 87, 156402 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    NIST Chemistry WebBook, 2010 Google Scholar
  27. 27.
    P. Scheier, T.D. Märk, J. Chem. Phys. 87, 5238 (1987) ADSCrossRefGoogle Scholar
  28. 28.
    M.J. DeLuca, D.M. Cyr, W.A. Chupka, M.A. Johnson, J. Chem. Phys. 92, 7349 (1990) ADSCrossRefGoogle Scholar
  29. 29.
    A. Ding, J. Hesslich, Chem. Phys. Lett. 94, 54 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    S. Prasalovich, K. Hansen, M. Kjellberg, V.N. Popok, E.E.B. Campbell, J. Chem. Phys. 123, 084317 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Hoare, Adv. Chem. Phys. 40, 49 (1979) CrossRefGoogle Scholar
  32. 32.
    T.P. Martin, Phys. Rep. 273, 199 (1996) ADSCrossRefGoogle Scholar
  33. 33.
    I.A. Harris, R.S. Kidwell, J.A. Northby, Phys. Rev. Lett. 53, 2390 (1984) ADSCrossRefGoogle Scholar
  34. 34.
    M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995) ADSCrossRefGoogle Scholar
  35. 35.
    A. Mauracher et al., Phys. Chem. Chem. Phys. 37, 8240 (2009) CrossRefGoogle Scholar
  36. 36.
    Y. Ren, V.V. Kresin, J. Chem. Phys. 128, 074303 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    W.K. Lewis, R.J. Bemish, R.E. Miller, J. Chem. Phys. 123, 141103 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    W.K. Lewis et al., J. Am. Chem. Soc. 126, 11283 (2004) CrossRefGoogle Scholar
  39. 39.
    D. Bonhommeau, M. Lewerenz, N. Halberstadt, J. Chem. Phys. 128, 054302 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    S. Vongehr, A.A. Scheidemann, C. Wittig, V.V. Kresin, Chem. Phys. Lett. 353, 89 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    C.P. Schulz, P. Claas, D. Schumacher, F. Stienkemeier, Phys. Rev. Lett. 92, 013401 (2004) ADSCrossRefGoogle Scholar
  42. 42.
    J.H. Kim, D.S. Peterka, C.C. Wang, D.M. Neumark, J. Chem. Phys. 124, 214301 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    B.E. Callicoatt, K. Forde, T. Ruchti, L.L. Jung, K.C. Janda, N. Halberstadt, J. Chem. Phys. 108, 9371 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    H. Tanuma, J. Sanderson, N. Kobayashi, J. Phys. Soc. Jpn 68, 2570 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    J. Tiggesbäumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2007) CrossRefGoogle Scholar
  46. 46.
    F. Ferreira da Silva et al., Chem. Eur. J. 15, 7101 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. Schöbel
    • 1
  • P. Bartl
    • 1
  • C. Leidlmair
    • 1
  • S. Denifl
    • 1
  • O. Echt
    • 1
    • 2
    Email author
  • T. D. Märk
    • 1
    • 3
  • P. Scheier
    • 1
  1. 1.Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck, Leopold Franzens UniversitätInnsbruckAustria
  2. 2.Department of Physics, University of New HampshireDurhamUSA
  3. 3.Department of Experimental Physics, Comenius University BratislavaBratislavaSlovakia

Personalised recommendations