The European Physical Journal D

, Volume 63, Issue 2, pp 301–306 | Cite as

Gold aggregates on silica templates and decorated silica arrays for SERS applications

  • F. CastilloEmail author
  • E. De la Rosa
  • E. Pérez
Topical issue: ISSPIC 15 - Optical properties Regular Article


In this work, we report the fabrication and characterization of size controllable gold nanoparticles (NPs) aggregates for their application in surface enhanced Raman scattering (SERS). Aggregates were prepared using two methodologies: (i) by using silica particles arrays as a template to agglomerate gold NPs between the inter-particle interstices, and (ii) by functionalizing silica particles to be used as support to graft gold nanoparticles and thus to form decorated silica particle arrays. These substrates were used in the detection of Rhodamine 6G producing an enhancement factor (EF) from 104 to 106 that is associated to the increment of hot spot (HS) sites, and the fact that plasmon resonance from aggregates and absorption wavelength of test molecules are closely in resonance with excitation wavelength. The EF was also reduced when the plasmon resonance was red-shifted as a result of the increment of aggregate size. In spite of this, the EF is high enough to make these SERS substrates excellent candidates for sensing applications.


Surface Enhance Raman Scattering Plasmon Resonance Silica Particle Colloidal Crystal Silica Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nie, S.R. Emory, Science 275, 1102 (1997) CrossRefGoogle Scholar
  2. 2.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    Hongxing Xu , J. Aizpurura, M. Käll, P. Apell, Phys. Rev. E 62, 3 (2000) Google Scholar
  5. 5.
    G.C. Schatz, R.P. Van Duyne, Electromagnetic mechanism of surfaceenhanced spectroscopy, in Handbook of Vibrational Spectroscopy, edited by J.M. Chalmers, P.R. Griffiths (John Wiley & Sons, Ltd., 2002), pp. 759–774 Google Scholar
  6. 6.
    R. Aroca, Surface-enhanced Vibrational Spectroscopy (John Wiley & Sons, Chichester, 2006) Google Scholar
  7. 7.
    E.C. Le Ru , P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy, and related plasmonic effects (Elsevier, Amsterdam, 2009) Google Scholar
  8. 8.
    E.C. Le Ru , E. Blackie, M. Mayer, P.G. Etchegoin, J. Phys. Chem. C. 111, 13794 (2007) CrossRefGoogle Scholar
  9. 9.
    A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998) CrossRefGoogle Scholar
  10. 10.
    F.J. García-Vidal, J.B. Pendry, Phys. Rev. Lett. 77, 1163 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    J. Grand , M. Lamy de la Chapelle , J.-L. Bijeon, P.-M. Adam, A. Vidal, P. Royer, Phys. Rev. B 72, 033407 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Sun, S.B. Wang, Y.J. Liu, Y. Jia, H.X. Xu, J. Raman Spectrosc. 39, 402 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J.R. Lombardi, R.L. Birke, J. Chem. Phys. 126, 244709 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    L. Gunnarsson, E.J. Bjerneld, H.X. Xu, S. Petronis, B. Kasemo, M. Käll, Appl. Phys. Lett. 78, 802 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    Wei Wang , Zhipeng Li , Baohua Gu , Zhenyu Zhang , Hongxing Xu , ACS Nano 3, 3493 (2009) CrossRefGoogle Scholar
  16. 16.
    A.M. Michaels, J. Jiang, L.J. Brus, Phys. Chem. B 104, 11965 (2000) CrossRefGoogle Scholar
  17. 17.
    A.M. Schwartzberg et al., J. Phys. Chem. B 108, 19191 (2004) CrossRefGoogle Scholar
  18. 18.
    K. Kneipp, H. Kneipp, R. Manoharan, E.B. Hanlon, I. Itzkan, R.R. Dasari, M.S. Feld, Appl. Spectrosc. 52, 12 (1998) CrossRefGoogle Scholar
  19. 19.
    Rongchao Jin , Angew. Chem. Int. Ed. 49, 2826 (2010) CrossRefGoogle Scholar
  20. 20.
    J. Zhang et al., J. Phys. Chem. B 108, 19191 (2004) CrossRefGoogle Scholar
  21. 21.
    W. Wang et al., Anal. Chim. Acta 567, 121 (2006) CrossRefGoogle Scholar
  22. 22.
    W. Wang et al., Anal. Chim. Acta 567, 121 (2006) CrossRefGoogle Scholar
  23. 23.
    B. Yan et al., ACS Nano 3, 1190 (2009) CrossRefGoogle Scholar
  24. 24.
    J. Turkenvich, P.C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 55 (1951) CrossRefGoogle Scholar
  25. 25.
    D. Kandpal, S. Kalele, S.K. Kulkarni, Pramana J. Phys. 69, 2 (2000) Google Scholar
  26. 26.
    S.L. Westcott, S.J. Oldenburg, T.R. Lee, N.J. Halas, Langmuir 14, 19 (1998) CrossRefGoogle Scholar
  27. 27.
    P.M. Tessier, O.D. Velev, A.T. Kalambur, J.F. Rabolt, A.M. Lenhoff, E.W. Kaler, J. Am. Chem. Soc. 122, 9554 (2000)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Doctorado en Ingeniería y Ciencia de Materiales (DICIM), Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona UniversitariaSan Luis PotosíMéxico
  2. 2.Centro de Investigaciones en Óptica, A.C. A.P. 1-948León Gto.Mexico
  3. 3.Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona UniversitariaSan Luis PotosíMexico

Personalised recommendations