Advertisement

The European Physical Journal D

, Volume 63, Issue 2, pp 311–314 | Cite as

Derivatives of the thiolate-protected gold cluster Au25(SR)18 -1

  • O. Lopez-AcevedoEmail author
  • H. Häkkinen
Topical issue: ISSPIC 15 - Protected clusters, nanocrystals,and self assembly Regular Article

Abstract

Loss of small fragments (like AuL, Au2L3, Au4L4) have been found systematically in several MALDI and FAB experiments on thiolate-protected gold clusters of different sizes. When using the cluster Au25L18 -1 as parent cluster, the fragmented cluster Au21L14 -1 has been reported to be obtained in high proportion (L = SCH2CH2Ph). Here we analyse a few possible fragmentation patterns of the well-known parent cluster Au25L18 -1 (L = SCH3). Using DFT calculations we study the different atomic configurations obtained after a AuL fragment is lost from Au25L18 -1. We found energetically favourable configurations that can be written as Au13 [Au2L3]6-z [AuL2] z -1, where the modification can be described as a replacement of the long protecting unit by a short one (Au2L3  →  AuL2). A full replacement (z = 6) gives rise to a protected Au19L12 -1 cluster. This mechanism does not modify the super-atomic electronic structure of the gold core, i.e., all these fragments remain an 8 electron super-atom clusters exactly like the parent Au25L18 -1. We suggest that the Au19L12 -1 cluster could be realized by using a bulky thiolate, such as the tert-butyl thiolate SC(CH3)3 .

Keywords

Gold Atom Fragmentation Energy Gold Core Free Sulphur Parent Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. (1994) Google Scholar
  2. 2.
    R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mater. 8 (1996) Google Scholar
  3. 3.
    N.K. Chaki, Y. Negishi, H. Tsunoyama, Y. Shichibu, T. Tsukuda, J. Am. Chem. Soc. 130 (2008) Google Scholar
  4. 4.
    P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318 (2007) Google Scholar
  5. 5.
    S.W. Chen , R.S. Ingram , M.J. Hostetler , J.J. Pietron , R.W. Murray , T.G. Schaaff , J.T. Khoury , M.M. Alvarez , R.L. Whetten , Science 280 (1998) Google Scholar
  6. 6.
    T.G. Schaaff, R.L. Whetten, J. Phys. Chem. B 104 (2000) Google Scholar
  7. 7.
    M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray, J. Am. Chem. Soc. 130 (2008) Google Scholar
  8. 8.
    Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. 127 (2005) Google Scholar
  9. 9.
    J.F. Parker, K.A. Kacprzak, O. Lopez-Acevedo, H. Häkkinen, R. Murray, J. Phys. Chem. C 114 (2010) Google Scholar
  10. 10.
    M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin, J. Am. Chem. Soc. 130 (2008) Google Scholar
  11. 11.
    C.M. Aikens, J. Phys. Chem. Lett. 1 (2010) Google Scholar
  12. 12.
    J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Gronbeck, J. Am. Chem. Soc. 130 (2008) Google Scholar
  13. 13.
    M. Walter et al., Proc. Natl. Acad. Sci. USA 105 (2008) Google Scholar
  14. 14.
    H. Häkkinen, Chem. Soc. Rev. 37 (2008) Google Scholar
  15. 15.
    R.C. Jin, Nanoscale 2 (2010) Google Scholar
  16. 16.
    J.F. Parker, C.A. Fields-Zinna, R.W. Murray, Acc. Chem. Res. 43 (2010) Google Scholar
  17. 17.
    A. Dass, K. Holt, J.F. Parker, S.W. Feldberg, R.W. Murray, J. Phys. Chem. C 112 (2008) Google Scholar
  18. 18.
    C.A. Fields-Zinna, M.C. Crowe, A. Dass, J.E.F. Weaver, R.W. Murray, Langmuir 25 (2009) Google Scholar
  19. 19.
    A. Dass, A. Stevenson, G.R. Dubay, J.B. Tracy, R.W. Murray, J. Am. Chem. Soc. 130 (2008) Google Scholar
  20. 20.
    Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, J. Phys. Chem. B 110 (2006) Google Scholar
  21. 21.
    T.G. Schaaff, M.N. Shafigullin, J.T. Khoury, I. Vezmar, R.L. Whetten, J. Phys. Chem. B 105 (2001) Google Scholar
  22. 22.
    Y. Shichibu, Y. Negishi, T. Tsukuda, T. Teranishi, J. Am. Chem. Soc. 127 (2005) Google Scholar
  23. 23.
    C.A. Fields-Zinna , J.S. Sampson , M.C. Crowe , J.B. Tracy , J.F. Parker , A.M. deNey , D.C. Muddiman, R.W. Murray, J. Am. Chem. Soc. 131 (2009) Google Scholar
  24. 24.
    A. Dass, G.R. Dubay, C.A. Fields-Zinna, R.W. Murray, Anal. Chem. 80 (2008) Google Scholar
  25. 25.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71 (2005) Google Scholar
  26. 26.
    J. Enkovaara et al., J. Phys. Condens. Matter 22 (2010) Google Scholar
  27. 27.
    P.E. Blöchl, Phys. Rev. B 50 (1994) Google Scholar
  28. 28.
    P.E. Blöchl, C.J. Forst, J. Schimpl, Bull. Mater. Sci. 26 (2003) Google Scholar
  29. 29.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) Google Scholar
  30. 30.
    H. Grönbeck, M. Walter, H. Häkkinen, J. Am. Chem. Soc. 128 (2006) Google Scholar
  31. 31.
    H. Qian, W.T. Eckenhoff, Y. Zhu, T. Pintauer, R. Jin, J. Am. Chem. Soc. 132 (2010) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and Department of ChemistryNanoscience Center, University of JyväskyläJyväskyläFinland

Personalised recommendations