Advertisement

The European Physical Journal D

, Volume 63, Issue 1, pp 103–109 | Cite as

Electron impact excitation into the 3p54p levels from the 3p54s metastable levels of argon

  • G. F. Du
  • J. Jiang
  • C. Z. DongEmail author
Atomic and Molecular Collisions Regular Article

Abstract

Electron impact excitation cross sections of argon from the 3p 54s matastable states to the excited states of 3p 54p configuration were calculated by using the fully relativistic distorted wave method, based on the multi-configuration Dirac-Fock (MCDF) theory. The influence of electron correlation effects on cross sections were discussed in detail. For low energy impact, it is found that the electron correlation effects have a large influence on the cross sections and make the cross sections smaller. However, this influence become smaller with the increasing of incident electron energy. The present results are in good agreement with the experiments of Boffard et al. [Phys. Rev. A 59, 2749 (1999)] in most cases.

Keywords

Target State Excitation Cross Section Metastable Level Electron Impact Excitation Hollow Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Chutjian, D.C. Cartwright, Phys. Rev. A 23, 5 (1981)CrossRefGoogle Scholar
  2. 2.
    R.S. Schappe, M.B. Schulman, L.W. Anderson, C.C. Lin, Phys. Rev. A 50, 1 (1994)CrossRefGoogle Scholar
  3. 3.
    S. Tsurubuchi, T. Miyazaki, K. Motohashi, J. Phys. B At. Mol. Opt. Phys. 29, 1785 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    S. Kaur, R. Srivastava, R.P. McEachran, A.D. Stauffer, J. Phys. B At. Mol. Opt. Phys. 31, 873 (1998)CrossRefGoogle Scholar
  5. 5.
    D.H. Madison, C.M. Maloney, J.B. Wang, J. Phys. B At. Mol. Opt. Phys. 31, 4833 (1998) CrossRefGoogle Scholar
  6. 6.
    R.K. Gangwar, L. Sharma, R. Srivastava, A.D. Stauffer, Phys. Rev. A 81, 052707 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R.P. McEachran, A.D. Stauffer, J. Phys. B 16, 4023 (1983) ADSCrossRefGoogle Scholar
  8. 8.
    D.E. Golden, H.W. Bandel, Phys. Rev. 149, 1 (1966)CrossRefGoogle Scholar
  9. 9.
    W.E. Kauppila, T.S. Stein, J.H. Smart, M.S. Dababneh, Y.K. Ho, J.P. Downing, V. Pol, Phys. Rev. A 24, 2 (1981)CrossRefGoogle Scholar
  10. 10.
    R.W. Wagenaar, F.J. de Heer, J. Phys. B 18, 2021 (1985) ADSCrossRefGoogle Scholar
  11. 11.
    W. Lotz, Z. Phys. 206, 205 (1967) ADSCrossRefGoogle Scholar
  12. 12.
    H.A. Hyman, Phys. Rev. A 20, 3 (1979)CrossRefGoogle Scholar
  13. 13.
    R.S. Freund, R.C. Wetzel, R.J. Shul, T.R. Hayes, Phys. Rev. A 41, 7 (1990)Google Scholar
  14. 14.
    I.Yu. Baranov, N.B. Kolokolov, N.P. Penkin, Opt. Spektrosk. 58, 268 (1985) [Opt. Spectrosc. 58, 160 (1985)]Google Scholar
  15. 15.
    A.A. Mityureva, N.P. Penkin, V.V. Smirnov, Opt. Spektrosk. 66, 790 (1989) [Opt. Spectrosc. 66, 463 (1989)]Google Scholar
  16. 16.
    J.B. Boffard, G.A. Piech, M.F. Gehrke, L.W. Anderson, C.C. Lin, Phys. Rev. A 59, 2749 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    K. Bartschat, V. Zeman, Phys. Rev. A 59, R2552 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    C.M. Maloney, J.L. Peacher, K. Bartschat, D.H. Madison, Phys. Rev. A 61, 022701 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    A. Dasgupta, M. Blaha, J.L. Giuliani, Phys. Rev. A 61, 012703 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    R. Srivastava, A.D. Stauffer, L. Sharma, Phys. Rev. A 74, 012715 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    J. Jiang, C.-Z. Dong, L.-Y. Xie, X.-X. Zhou, J. Phys. B At. Mol. Opt. Phys. 41, 245204 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    J. Jiang, C.Z. Dong, L.Y. Xie, J.G. Wang, J. Yan, S. Fritzsche, Chin. Phys. Lett. 24, 691 (2007)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Jiang, C.Z. Dong, L.Y. Xie, J.G. Wang, Phys. Rev. A 78, 022709 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S. Fritzsche et al., Nucl. Instr. Methods B 205, 93 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    H.L. Zhang, D.H. Sampson, Phys. Rev. A 41, 198 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Christopher et al., Phys. Rev. A 47, 1009 (1993) CrossRefGoogle Scholar
  28. 28.
    C.Z. Dong, S. Fritzsche, Phys. Rev. A 72, 012507 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    S. Fritzsche , J. Electron . Spectros. Relat. Phenomena 114−116, 1155 (2001) CrossRefGoogle Scholar
  30. 30.
    I.P. Grant et al., Comput. Phys. Commun. 21, 207 (1980)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China

Personalised recommendations