Advertisement

Entanglement behaviors of two-mode squeezed thermal states in two different environments

  • S. -H. XiangEmail author
  • K. -H. Song
  • W. Wen
  • Z. -G. Shi
Regular Article

Abstract

We study entanglement properties of two-mode squeezed thermal states subjected to two sources of decoherence: the common reservoirs and the bosonic memory Gaussian channel. For the former one, we find that there exist three different behaviors: no-sudden death, sudden death, and no-creation of entanglement. The range of parameters characterizing these processes is obtained. For the latter one, we obtain a threshold in the degree of squeezing above which the input states remain always entangled. Otherwise, no entanglement is allowed in bosonic Gaussian channel with memory effect. We show that a degree of memory for quantum channel can be help to increase the initial entanglement, while the mean number of added thermal photons is to fasten the decoherence process.

Keywords

Quantum Channel Gaussian State Entanglement Sudden Death Entanglement Evolution Gaussian Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Phys. Rev. Lett. 68, 3663 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    S.F. Pereira, Z.Y. Ou, H.J. Kimble, Phys. Rev. A 62, 042311 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    W.P. Bowen, N. Treps, R. Schnabel, P.K. Lam, Phys. Rev. Lett. 89, 253601 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    G. Adesso, F. Illuminati, J. Phys. A: Math. Theor. 40, 7821 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Navascues, A. Acin, Phys. Rev. A 72, 012303 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    A. Biswas, G.S. Agarwal, Phys. Rev. A 75, 032104 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    R. Simon, Phys. Rev. Lett. 84, 2726 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    M.C. de Oliveira, Phys. Rev. A 70, 034303 (2004) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    R.F. Werner, M.M. Wolf, Phys. Rev. Lett. 86, 3658 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 93, 220504 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    A. Serafini, G. Adesso, F. Illuminati, Phys. Rev. A 71, 032349 (2005) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    G. Adesso, F. Illuminati, New J. Phys. 8, 15 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    G. Adesso, A. Serafini, F. Illuminati, New J. Phys. 9, 60 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Praizner-Bechcicki, J. Phys. A 37, L173 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Xiang, B. Shao, K.H. Song, Phys. Rev. A 78, 052313 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Paz, A.J. Roncaglia, Phys. Rev. Lett. 100, 220401 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    T. Hiroshima, Phys. Rev. A 63, 022305 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    C. Horhammer, H. Buttner, Phys. Rev. A 77, 042305 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    R. Vasile, S. Olivares, M.G.A. Paris, S. Maniscalco, Phys. Rev. A 80, 062324 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    S. Daffer, K. Wodkiewicz, J.K. McIver, Phys. Rev. A 68, 012104 (2003) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, London, 1997) Google Scholar
  27. 27.
    J.H. An, S.J. Wang, H.G. Luo, J. Phys. A 38, 3579 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997) Google Scholar
  29. 29.
    P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 68, 062309 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    A. Serafini, F. Illuminati, M.G.A. Paris, S. De Siena, Phys. Rev. A 69, 022318 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    N.J. Cerf, J. Clavareau, C. Macchiavello, J. Roland, Phys. Rev. A 72, 042330 (2005) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. -H. Xiang
    • 1
    Email author
  • K. -H. Song
    • 1
  • W. Wen
    • 1
  • Z. -G. Shi
    • 1
  1. 1.Department of Physics and Information EngineeringHuaihua UniversityHuaihua, HunanP.R. China

Personalised recommendations