Advertisement

The European Physical Journal D

, Volume 63, Issue 2, pp 307–310 | Cite as

Regenerative synthesis of copper nanoparticles by photoirradiation

  • N. Nishida
  • A. Miyashita
  • N. Hashimoto
  • H. Murayama
  • H. TanakaEmail author
Topical issue: ISSPIC 15 - Protected clusters, nanocrystals,and self assembly Regular Article

Abstract

Copper nanoparticles have attracted much attention because of their low cost, and because their use can contribute toward the sustainability of metal resources. In this study, copper nanoparticles were synthesized by the photoirradiation of copper acetate solution at room temperature. The diameter and chemical composition of the obtained copper nanoparticles were analyzed using field-emission scanning electron microscope (FE-SEM) spectrophotometer and an X-ray photoelectron spectrometer. Well-dispersed copper nanoparticles with  ~5 nm in diameter were observed in the solution. On the other hand, when the nanoparticle solution was exposed to fresh air, nanoparticles were not observed in the solution. Furthermore, the copper nanoparticles were recovered from a solution of decomposed nanoparticles by re-photoirradiation.

Keywords

Copper Nanoparticles Yellow Solution Copper Acetate Surface Plasmon Band Regenerative Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Dold, Rev. Environ. Sci. Biotechnol. 7, 275 (2008) CrossRefGoogle Scholar
  2. 2.
    N. Toshima , T. Yonezawa , New J. Chem. 22, 1179 (1998) CrossRefGoogle Scholar
  3. 3.
    M. Brust et al., J. Chem. Soc. Chem. Commun. 801 (1994) Google Scholar
  4. 4.
    T.G. Schaaff et al., J. Phys. Chem. B 102, 10643 (1998) CrossRefGoogle Scholar
  5. 5.
    C. Noguez, I.L. Garzón, Chem. Soc. Rev. 38, 757 (2009) CrossRefGoogle Scholar
  6. 6.
    Q. Hao, L. Xu, G. Li, Y. Qian, Langmuir 25, 6363 (2009) CrossRefGoogle Scholar
  7. 7.
    D.K. Sarkar, X.J. Zhou, A. Tannous, K.T. Leung, J. Phys. Chem. B 107, 2879 (2003) CrossRefGoogle Scholar
  8. 8.
    B.K. Park et al., J. Colloid Interface Sci. 311, 417 (2007) CrossRefGoogle Scholar
  9. 9.
    T. Yonezawa, N. Nishida, A. Hyono, Chem. Lett. 39, 548 (2010) CrossRefGoogle Scholar
  10. 10.
    M. Zhao, L. Sun, R.M. Crooks, J. Am. Chem. Soc. 120, 4877 (1998) CrossRefGoogle Scholar
  11. 11.
    C. Vázquez-Vázquez et al., Langmuir 25, 8208 (2009) CrossRefGoogle Scholar
  12. 12.
    H. Murayama, N. Hashimoto, H. Tanaka, Chem. Phys. Lett. 482, 291 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    H. Murayama , N. Hashimoto , H. Tanaka , J. Phys. 190, 012132-1 (2009) Google Scholar
  14. 14.
    H.H. Huang et al., Langmuir 12, 909 (1996) CrossRefGoogle Scholar
  15. 15.
    H.H. Huang et al., Langmuir 13, 172 (1997) CrossRefGoogle Scholar
  16. 16.
    C.D. Wagner et al., Handbook of X-ray Photoelectron spectroscopy, edited by G.E. Mullenberg (Perkin-Elmer Corporation, Eden Prairie Minnesota, 1979) Google Scholar
  17. 17.
    P. Brand, H. Freiser, Anal. Chem. 46, 1147 (1974) CrossRefGoogle Scholar
  18. 18.
    M. Yin et al., J. Am. Chem. Soc. 127, 9506 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • N. Nishida
    • 1
  • A. Miyashita
    • 1
  • N. Hashimoto
    • 1
  • H. Murayama
    • 1
  • H. Tanaka
    • 1
    Email author
  1. 1.Department of Applied ChemistryFaculty of Science and Engineering, Chuo UniversityTokyoJapan

Personalised recommendations