Advertisement

The European Physical Journal D

, Volume 63, Issue 2, pp 289–292 | Cite as

Photoluminescence dynamics of organic molecule-passivated Si nanoclusters

  • M. ImamuraEmail author
  • J. Nakamura
  • S. Fujimasa
  • H. Yasuda
  • H. Kobayashi
  • Y. Negishi
Topical issue: ISSPIC 15 - Optical properties Regular Article

Abstract

The size-selected phenyl-passivated Si nanoclusters with the mean diameters of 1.5 and 1.3 nm have been prepared in the solution route. The intense PL observed in Si nanoclusters, in which the band gap energies increase up to approximately 4 eV, originates from electron-hole pair recombination. From time-resolved PL, two kinds of exponential PL decay components with fast and slow lifetime were observed. The identical decays with slow lifetime will be derived from the surface states of Si nanoclusters passivated by phenyl molecules. The size-dependent zero-phonon assisted optical transitions by quantum size effects occur at a high rate of sub-nanosecond timescale.

Keywords

Solution Route Magnesium Silicide Quantum Monte Carlo Calculation Phenyl Lithium Decrease Cluster Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Phys. Rev. Lett. 81, 2803 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    A.G. Cullis, L.T. Canham, P.D. Calcott, J. Appl. Phys. 82, 909 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    F. Trojánek, K. Neudert, M. Bittner, P. Maly, Phys. Rev. B 72, 075365 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    G. Allan, C. Delerue, M. Lannoo, Phys. Rev. Lett. 76, 296 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    K.A. Pettigrew, Q. Liu, P.P. Power, S.M. Kauzlarich, Chem. Mater. 15, 4005 (2003) CrossRefGoogle Scholar
  7. 7.
    C.S. Yang, R.A. Bley, S.M. Kauzlarich, H.W.H. Lee, G.R. Delgado, J. Am. Chem. Soc. 121, 5191 (1999) CrossRefGoogle Scholar
  8. 8.
    A. Tanaka, R. Saito, T. Kamikake, M. Imamura, H. Yasuda, Solid State Commun. 140, 400 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    A. Lapinski, J.S. Larsen, M. Langgard, J. Waluk, J.G. Radziszewski, J. Phys. Chem. A 105, 10520 (2001) CrossRefGoogle Scholar
  10. 10.
    A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli, Phys. Rev. Lett. 88, 097401 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    F.A. Reboredo, G. Galli, J. Phys. Chem. B 109, 1072 (2005) CrossRefGoogle Scholar
  12. 12.
    F. Trojánek, K. Neudert, M. Bittner, P. Maly, Phys. Rev. B 72, 075365 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Imamura
    • 1
    Email author
  • J. Nakamura
    • 2
  • S. Fujimasa
    • 2
  • H. Yasuda
    • 3
  • H. Kobayashi
    • 4
  • Y. Negishi
    • 4
  1. 1.Synchrotron Light Application Center/Saga UniversitySagaJapan
  2. 2.Department of Mechanical Engineering/Kobe UniversityKobeJapan
  3. 3.Research Center for Ultra-High Voltage Electron Microscopy/Osaka UniversityOsakaJapan
  4. 4.Department of Applied Chemistry/Tokyo University of ScienceTokyoJapan

Personalised recommendations