Advertisement

The European Physical Journal D

, Volume 61, Issue 1, pp 51–55 | Cite as

Lowest lying 1De resonance of H- in Debye plasma

Article

Abstract.

Electron-hydrogen scattering has been investigated in Debye plasma environment employing the close-coupling approximation. Two models, viz., 6-state CCA and 9-state CCA have been used. Plasma screening has been taken into account via Debye-Hückel model potential. The lowest lying \(^1{\rm D}^{{\rm e}}\) auto-detaching resonance of the hydrogen negative ion has been successfully predicted for various plasma conditions. The resonant state changes to shape resonance for Debye scattering lengths less than a critical value.

Keywords

Plasma Condition Debye Length Resonant State Plasma Medium Feshbach Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Salzman, Atomic Physics in Hot Plasmas (Oxford University Press, Oxford, 1998) Google Scholar
  2. 2.
    M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998) CrossRefADSGoogle Scholar
  3. 3.
    J.P. Hansen, I.R. McDonald, Theory of Simple Fluids (Academic, London, 1986) Google Scholar
  4. 4.
    A.V. Vinogradov, V.P. Shevelko, Sov. Phys. JETP 44, 542 (1976) ADSGoogle Scholar
  5. 5.
    B.L. Whitten, N.F. Lane, J.C. Weisheit, Phys. Rev. A 29, 945 (1984) CrossRefADSGoogle Scholar
  6. 6.
    B.L. Whitten, N.F. Lane, J.C. Weisheit, Phys. Rev. A 30, 650 (1984) CrossRefADSGoogle Scholar
  7. 7.
    J.K. Yuan, Y.S. Sun, S.T. Zheng, J. Phys. B 29, 153 (1996) CrossRefADSGoogle Scholar
  8. 8.
    Y.-D. Jung, Phys. Plasmas 2, 232 (1995) Google Scholar
  9. 9.
    Y.-D. Jung, Phys. Plasmas 2, 1775 (1995) CrossRefADSGoogle Scholar
  10. 10.
    Y.-D. Jung, Phys. Plasmas 4, 21 (1997) CrossRefADSGoogle Scholar
  11. 11.
    Y.Y. Qi, Y. Wu, J.G. Wang, Y.Z. Qu, Phys. Plasmas 16, 023502 (2009) CrossRefADSGoogle Scholar
  12. 12.
    Y.-D. Jung, J.-S. Yoon, J. Phys. B 29, 3549 (1996) CrossRefADSGoogle Scholar
  13. 13.
    S. Nakai, K. Mima, Rep. Prog. Phys. 67, 321 (2004) CrossRefADSGoogle Scholar
  14. 14.
    S. Kar, Y.K. Ho, Phys. Rev. E 70, 066411 (2004) CrossRefADSGoogle Scholar
  15. 15.
    S. Kar, Y.K. Ho, New J. Phys. 7, 141 (2005) CrossRefADSGoogle Scholar
  16. 16.
    S. Kar, Y.K. Ho, Few-Body Syst. 40, 13 (2006) CrossRefADSGoogle Scholar
  17. 17.
    A. Basu, Europhys. Lett. 88, 53001 (2009) CrossRefADSGoogle Scholar
  18. 18.
    A. Basu, J. Phys. B At. Mol. Opt. Phys. 43, 115202 (2010) CrossRefADSGoogle Scholar
  19. 19.
    A. Basu, A.S. Ghosh, Nucl. Instrum. Meth. B 266, 522 (2008) CrossRefADSGoogle Scholar
  20. 20.
    S. Kar, Y.K. Ho, Phys. Rev. A 71, 052503 (2005) CrossRefADSGoogle Scholar
  21. 21.
    S.B. Zhang, J.G. Wang, R.K. Janev, Phys. Rev. Lett. 104, 023203 (2010) CrossRefADSGoogle Scholar
  22. 22.
    S.B. Zhang, J.G. Wang, R.K. Janev, Phys. Rev. A 81, 032707 (2010) CrossRefADSGoogle Scholar
  23. 23.
    H. Okutsu, T. Sako, K. Yamanouchi, G.H.F. Diercksen, J. Phys. B At. Mol. Opt. Phys. 38, 917 (2005) CrossRefADSGoogle Scholar
  24. 24.
    H.R. Griem, Principles of Plasma Sprectoscopy, Cambridge Monographs in Plasma Physics (Cambridge University Press, Cambridge, 2005), Vol. 2 Google Scholar
  25. 25.
    B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Astron. Astrophys. 396, 337 (2002) CrossRefADSGoogle Scholar
  26. 26.
    A. Basu, P.K. Sinha, A.S. Ghosh, Phys. Rev. A 63, 012502 (2001) CrossRefADSGoogle Scholar
  27. 27.
    D.C. Rislove, C.E.M. Strauss, H.C. Bryant, M.S. Gulley, D.J. Funk, X.M. Zhao, W.A. Miller, Phys. Rev. A 58, 1889 (1998), and references therein CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsMaheshtala CollegeWest BengalIndia

Personalised recommendations