Advertisement

The European Physical Journal D

, Volume 63, Issue 2, pp 231–234 | Cite as

CO adsorption on neutral iridium clusters

  • C. Kerpal
  • D. J. Harding
  • G. Meijer
  • A. FielickeEmail author
Topical issue: ISSPIC 15 - Cluster reactivity and nanocatalysis Regular Article

Abstract

The adsorption of carbon monoxide on neutral iridium clusters in the size range of n = 3 to 21 atoms is investigated with infrared multiple photon dissociation spectroscopy. For each cluster size only a single ν(CO) band is present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1 (n = 18) which can be attributed to an atop binding geometry. This behaviour is compared to the CO binding geometries on clusters of other group 9 and 10 transition metals as well as to that on extended surfaces. The preference of Ir for atop binding is rationalised by relativistic effects on the electronic structure of the later 5d metals.

Keywords

Cluster Size Meijer Transition Metal Cluster Binding Geometry Previous Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Cox, K.C. Reichmann, D.J. Trevor, A. Kaldor, J. Chem. Phys. 88, 111 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    P. Schnabel, K.G. Weil, M.P. Irion, Angew. Chem. Int. Ed. Engl. 31, 636 (1992) CrossRefGoogle Scholar
  3. 3.
    Y. Shi, K.M. Ervin, J. Chem. Phys. 108, 1757 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Knickelbein, Ann. Rev. Phys. Chem. 50, 79 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    I. Balteanu, U. Achatz, O.P. Balaj, B.S. Fox, M.K. Beyer, V.E. Bondybey, Int. J. Mass Spectrom. 229, 61 (2003) CrossRefGoogle Scholar
  6. 6.
    L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003) CrossRefGoogle Scholar
  7. 7.
    A. Fielicke, P. Gruene, G. Meijer, D.M. Rayner, Surf. Sci. 603, 1427 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, J. Dumesic, J. Phys. Chem. B 105, 4018 (2001) CrossRefGoogle Scholar
  9. 9.
    Q.M. Hu, K. Reuter, M. Scheffler, Phys. Rev. Lett. 98, 176103 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. Blyholder, J. Phys. Chem. 68, 2772 (1964) CrossRefGoogle Scholar
  11. 11.
    P. Gruene, A. Fielicke, G. Meijer, D.M. Rayner, Phys. Chem. Chem. Phys. 10, 6144 (2008) CrossRefGoogle Scholar
  12. 12.
    G. Pacchioni, S.C. Chung, S. Krüger, N. Rösch, Surf. Sci. 392, 173 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    C. Gourlaouen, O. Parisel, J.P. Piquemal, J. Chem. Phys. 133, 124310 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    H. Orita, N. Itoh, Y. Inada, Chem. Phys. Lett. 384, 271 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    K. Doll, Surf. Sci. 573, 464 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    A. Stroppa, J. Phys., Condens. Matter 20, 064205 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A. Fielicke, G. von Helden, G. Meijer, D.B. Pedersen, B. Simard, D.M. Rayner, J. Chem. Phys. 124, 194305 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    D. Oepts, A.F.G. van der Meer, P.W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    A. Fielicke, G. von Helden, G. Meijer, B. Simard, S. Dénommée, D.M. Rayner, J. Am. Chem. Soc. 125, 11184 (2003) CrossRefGoogle Scholar
  20. 20.
    J.T. Lyon, P. Gruene, A. Fielicke, G. Meijer, D.M. Rayner, J. Chem. Phys. 131, 184706 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    A. Fielicke, K. Rademann, J. Phys. Chem. A 104, 6979 (2000) CrossRefGoogle Scholar
  22. 22.
    R. Martin, P. Gardner, R. Nalezinski, M. Tüshaus, A.M. Bradshaw, J. Electron. Spectrosc. Related Phenom. 64-65, 619 (1993) CrossRefGoogle Scholar
  23. 23.
    J. Lauterbach, R.W. Boyle, M. Schick, W.J. Mitchell, B. Meng, W.H. Weinberg, Surf. Sci. 350, 32 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    C. Klünker, M. Balden, S. Lehwald, W. Daum, Surf. Sci. 360, 104 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    R.K. Brandt, R.S. Sorbello, R.G. Greenler, Surf. Sci. 271, 605 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    D. Curulla, A. Clotet, J.M. Ricart, F. Illas, J. Phys. Chem. B 103, 5246 (1999) CrossRefGoogle Scholar
  27. 27.
    A. Föhlisch, H.P. Bonzel, Landolt-Börnstein – New Series III (SpringerMaterials, 2005), Vol. 42A4, Chap. 3.7.1 Google Scholar
  28. 28.
    S. Titmuss, K. Johnson, Q. Ge, D.A. King, J. Chem. Phys. 116, 8097 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    M. Gajdoš, A. Eichler, J. Hafner, J. Phys., Condens. Matter 16, 1141 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    L. Garlaschelli, S. Martinengo, P.L. Bellon, F. Demartin, M. Manassero, M.Y. Chiang, C.Y. Wei, R. Bau, J. Am. Chem. Soc. 106, 6664 (1984) CrossRefGoogle Scholar
  31. 31.
    M.F. Zhou, L. Andrews, J. Phys. Chem. A 103, 7773 (1999) CrossRefGoogle Scholar
  32. 32.
    M. Okumura, Y. Irie, Y. Kitagawa, T. Fujitani, Y. Maeda, T. Kasai, K. Yamaguchi, Catal. Today 111, 311 (2006) CrossRefGoogle Scholar
  33. 33.
    E.D. German, M. Sheintuch, J. Phys. Chem. C 112, 14377 (2008) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. Kerpal
    • 1
  • D. J. Harding
    • 1
  • G. Meijer
    • 1
  • A. Fielicke
    • 1
    Email author
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations