Advertisement

The European Physical Journal D

, Volume 62, Issue 1, pp 127–137 | Cite as

Irreversibility and spontaneous appearance of coherent behavior in reversible systems

  • E. Goles
  • S. RicaEmail author
Article

Abstract.

There is empirical evidence that long time numerical simulations of conservative and reversible partial differential equations evolve, as a general rule (exceptions are the integrable models), towards an equilibrium state that is mainly a coherent structure plus small fluctuations inherent in the conservative and reversible character of the original system. The fluctuations account for the energy difference between the initial configuration and the one of the coherent structure. If the energy is not small enough, then the intrinsic fluctuations may destroy the coherent structure. Thus we arrive to the conclusion that a transition arises from a non-coherent state to a coherent structure as we decrease the initial energy below a critical value. This phenomenon has been successfully observed in various numerical simulations. In this article, we stress that this general behavior is also observed in reversible and conservative cellular automata as in the Q2R model. We point out that this conservative and reversible cellular automata is ab initio deterministic and therefore all our numerical computations are not affected by an approximation of any kind.

Keywords

Cellular Automaton Ising Model Coherent Structure Initial Energy Critical Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Petviashvili, V.V. Yankov, Rev. Plasma Phys. 14, 5 (1985)Google Scholar
  2. 2.
    V.E. Zakharov et al., Pis’ma Zh. Eksp. Teor. Fiz. 48, 79 (1988), JETP Lett. 48, 83 (1988)ADSGoogle Scholar
  3. 3.
    S. Dyachenko et al., Zh. Eksp. Teor. Fiz. 96, 2026 (1989), Sov. Phys. JETP 69, 1144 (1989)ADSGoogle Scholar
  4. 4.
    R. Jordan, B. Turkington, C.L. Zirbel, Physica D 137, 353 (2000)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    R. Jordan, C. Josserand, Phys. Rev. E 61, 1527 (2000)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    K. Rasmussen et al., Phys. Rev. Lett. 84, 3740 (2000)CrossRefADSGoogle Scholar
  7. 7.
    B. Rumpf, A.C. Newell, Phys. Rev. Lett. 87, 054102 (2001)CrossRefADSGoogle Scholar
  8. 8.
    B. Rumpf, A.C. Newell, Physica D 184, 162 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    C. Josserand, S. Rica, Phys. Rev. Lett. 78, 1215 (1997)CrossRefADSGoogle Scholar
  10. 10.
    C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Phys. Rev. Lett. 95, 263901 (2005)CrossRefADSGoogle Scholar
  11. 11.
    G. Düring, A. Picozzi, S. Rica, Physica D 238, 1524 (2009); see also S. Rica, Équilibre et cinétique des systèmes d’ondes conservatifs, Habilitation à Diriger des Recherches, Université de Pierre et Marie Curie, Paris VI, 2007, http://tel.archives-ouvertes.fr/tel-00222913/fr/
  12. 12.
    M.J. Davis, S.A. Morgan, K. Burnett, Phys. Rev. Lett. 87, 160402 (2001)CrossRefADSGoogle Scholar
  13. 13.
    M.J. Davis, S.A. Morgan, K. Burnett, Phys. Rev. A 66, 053618 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Y. Pomeau, Physica D 61, 227 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  15. 15.
    S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov, Physica D 57, 96 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    T.L. Van Den Berg, D. Fanelli, X. Leoncini, Europhys. Lett. 89, 50010 (2010)CrossRefADSGoogle Scholar
  17. 17.
    G. Vichniac, Physica D 10, 96 (1984)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Y. Pomeau, J. Phys. A 17, L415 (1984)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    E. Goles, F. Fogelman, Disc. Appl. Math. 12, 261 (1985)CrossRefzbMATHGoogle Scholar
  20. 20.
    E. Goles, G. Vichniac, J. Phys. A 19, L961 (1986)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    H. Herrmann, J. Statist. Phys. 45, 145 (1986)CrossRefADSGoogle Scholar
  22. 22.
    S. Takesue, Phys. Rev. Lett. 59, 2499 (1987)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    H.J. Herrmann, H.O. Carmesin, D. Stauffer, J. Phys. A 20, 4939 (1987)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    L. Onsager, Phys. Rev. 65, 117 (1944)CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    C.N. Yang, Phys. Rev. 85, 808 (1952)CrossRefzbMATHADSGoogle Scholar
  26. 26.
    V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)Google Scholar
  27. 27.
    K. Hasselmann, J. Fluid Mech. 12, 481 (1962)CrossRefzbMATHADSMathSciNetGoogle Scholar
  28. 28.
    K. Hasselmann, J. Fluid Mech. 15, 273 (1963)CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    D.J. Benney, P.G. Saffman, Proc. R. Soc. Lond. A 289, 301 (1966)CrossRefADSGoogle Scholar
  30. 30.
    A. Newell, S. Nazarenko, L. Biven, Physica D 152-153, 520 (2001)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiagoChile
  2. 2.INLN, CNRS-UNSAValbonneFrance

Personalised recommendations