Advertisement

The European Physical Journal D

, Volume 62, Issue 1, pp 25–31 | Cite as

Faraday patterns in lubricated thin films

  • N.O. Rojas
  • M. ArgentinaEmail author
  • E. Cerda
  • E. Tirapegui
Article

Abstract.

We study the patterns observed in the vicinity of a Faraday instability, in the limit of a very thin layer of viscous fluid. We numerically solve our previous model [N.O. Rojas et al., Phys. Rev. Lett. 104, 187801 (2010)] and compare our predictions to experiments. Our model captures quantitatively the threshold of instability. The direct simulation of our system permits us to predict the patterns observed in experiments.

Keywords

Phase Diagram Fourier Spectrum Instability Threshold Small Aspect Ratio Excited Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.O. Rojas, M. Argentina, E. Cerda, E. Tirapegui, Phys. Rev. Lett. 104, 187801 (2010)CrossRefADSGoogle Scholar
  2. 2.
    M. Faraday, Philos. Trans. R. London 52, 319 (1831)Google Scholar
  3. 3.
    Oxford Dictionary of Scientists (Oxford University Press, 1999)Google Scholar
  4. 4.
    E.F.F. Chladni, Die akustik (Breitkopf und Härtel, Leipzig, 1802)Google Scholar
  5. 5.
    L. Rayleigh, Philos. Mag. 5, 229 (1883)Google Scholar
  6. 6.
    T.B. Benjamin, F. Ursell, Series A, Math. Phys. Sci. 225, 505 (1953)CrossRefGoogle Scholar
  7. 7.
    E. Mathieu, J. Math. Pure Appl. 13, 137 (1868)Google Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, 1987)Google Scholar
  9. 9.
    S. Douady, S. Fauve, Europhys. Lett. 6, 221 (1988)CrossRefADSGoogle Scholar
  10. 10.
    W.S. Edwards, S. Fauve, Phys. Rev. E 47, R788 (1993)CrossRefADSGoogle Scholar
  11. 11.
    S.T. Milner, J. Fluid. Mech. 225, 81 (1991)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    K. Kumar, L. Tuckerman, J. Fluid. Mech. 279, 49 (1994)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Beyer, R. Friedrich, Phys. Rev. E 51, 1162 (1995)CrossRefADSGoogle Scholar
  14. 14.
    F.J. Mancebo, J.M. Vega, J. Fluid. Mech. 467, 307 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    E.A. Cerda, E.L. Tirapegui, J. Fluid. Mech. 368, 195 (1998)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    P. Chen, J. Viñals, Phys. Rev. E. 60, 551 (1999)CrossRefADSGoogle Scholar
  17. 17.
    N. Perinet, D. Juric, L.S. Tuckerman, J. Fluid. Mech. 635, 126 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    C. Wagner, H.W. Müller, K. Knorr, Phys. Rev. E 68, 066204 (2003)CrossRefADSGoogle Scholar
  19. 19.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor and Francis, 1980)Google Scholar
  20. 20.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambrigde University Press, New York, 1992)Google Scholar
  21. 21.
    K. Kumar, Proc. R. Soc. London A 452, 1113 (1996)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    P.C. Newell, A.C. Passot, J. Lega, Ann. Rev. Fluid Mech. 25, 399 (1993)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    W. Zhang, J. Viñals, J. Fluid Mech. 336, 301 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    M.C. Cross, P. Hohenberg, Rev. Mod. Phys. 65, 851 (1996)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • N.O. Rojas
    • 1
  • M. Argentina
    • 1
    Email author
  • E. Cerda
    • 2
  • E. Tirapegui
    • 3
  1. 1.Université de Nice Sophia Antipolis, Laboratoire J.A. DieudonnéNice Cedex 2France
  2. 2.Departamento de Física, Universidad de SantiagoSantiagoChile
  3. 3.Departamento de Física, Facultad de Ciencias Físicas y Matematicas, Universidad de ChileSantiagoChile

Personalised recommendations