Advertisement

The European Physical Journal D

, Volume 61, Issue 1, pp 221–229 | Cite as

Modulation transfer in Doppler broadened Λ system and its application to frequency offset locking

  • Y. B. Kale
  • A. Ray
  • N. Singh
  • Q. V. Lawande
  • B. N. JagatapEmail author
Article

Abstract.

We investigate modulation transfer through pump induced atomic coherence in pump-probe spectroscopy of Doppler broadened medium of cesium atoms. The mechanism of modulation transfer is discussed for a three level Λ configuration under slow frequency modulation. Modulation transfer is demonstrated by performing frequency modulation spectroscopy (FMS) on a sub-natural linewidth (<2 MHz) electromagnetically induced transparency (EIT) signal. Here the pump laser is modulated by acousto-optic frequency modulation and the modulation is transferred to the probe laser through atomic coherence. Finally the probe laser is locked on the first derivative spectrum of EIT signal. Such atomic frequency offset locking system totally removes the necessity of direct modulation of laser frequency, so that the spectral resolution is limited only by the practical linewidth of the laser systems. Moreover it provides a novel way to eliminate the additional frequency and intensity noise associated with direct frequency dithering, which may limit the experimental resolution.

Keywords

Pump Laser Probe Laser Electromagnetically Induce Transparency Atomic Coherence Saturation Absorption Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gea-Banacloche, Y. Li, S. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995) CrossRefADSGoogle Scholar
  2. 2.
    Y. Li, M. Xiao, Phys. Rev. A 51, R2703 (1995) zbMATHCrossRefADSGoogle Scholar
  3. 3.
    G. Vemuri, G.S. Agarwal, B.D. Nageswara Rao, Phys. Rev. A 53, 2842 (1996) CrossRefADSGoogle Scholar
  4. 4.
    Y. Zhu, T.N. Wasserlauf, Phys. Rev. A 54, 3653 (1996) CrossRefADSGoogle Scholar
  5. 5.
    U.D. Rapol, A. Wasan, V. Natarajan, Phys. Rev. A 67, 053802 (2003) CrossRefADSGoogle Scholar
  6. 6.
    E. Arimondo, Progress in Optics (Elsevier Science, 1996), Vol. XXXV, p. 258 Google Scholar
  7. 7.
    K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991) CrossRefADSGoogle Scholar
  8. 8.
    A.M. Akulshin, S. Barriero, A. Lezamo, Phys. Rev. A 57, 2996 (1998) CrossRefADSGoogle Scholar
  9. 9.
    O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001) CrossRefADSGoogle Scholar
  10. 10.
    S. Knappe, V. Shah, P.D. Schwindt, L. Hollberg, J. Kitching, L. Liew, J. Moreland, Appl. Phys. Lett. 85, 1460 (2004) CrossRefADSGoogle Scholar
  11. 11.
    M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, R. Wynands, Eur. Phys. Lett. 54, 323 (2001) CrossRefADSGoogle Scholar
  12. 12.
    H.S. Moon, L. Lee, K. Kim, J.B. Kim, Appl. Phys. Lett. 84, 3001 (2004) CrossRefADSGoogle Scholar
  13. 13.
    S.C. Bell, D.M. Heywood, J.D. White, J.D. Close, R.E. Scholten, Appl. Phys. Lett. 90, 171120 (2007) CrossRefADSGoogle Scholar
  14. 14.
    D.J. Fullton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn, Phys. Rev. A 52, 2302 (1995) CrossRefADSGoogle Scholar
  15. 15.
    B. Lu, W.H. Burkett, M. Xiao, Opt. Commun. 141, 269 (1997) CrossRefADSGoogle Scholar
  16. 16.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005) CrossRefADSGoogle Scholar
  17. 17.
    C.Y. Ye, A.S. Zibrov, Phys. Rev. A 65, 023806 (2002) CrossRefADSGoogle Scholar
  18. 18.
    J. Clarke, H. Chen, W.A. Van Wijngaarden, Appl. Opt. 40, 2047 (2001) CrossRefADSGoogle Scholar
  19. 19.
    A.W. Brown, M. Xiao, Phys. Rev. A 70, 053830 (2004) CrossRefADSGoogle Scholar
  20. 20.
    G.C. Bjorklund, Opt. Lett. 5, 15 (1980) CrossRefADSGoogle Scholar
  21. 21.
    Y.B. Kale, A. Ray, Q.V. Lawande, R. D'Souza, B.N. Jagatap, Appl. Phys. B 100, 505 (2010) CrossRefADSGoogle Scholar
  22. 22.
    D.S. Elliot, R. Roy, S.J. Smith, Phys. Rev. A 26, 12, (1982) Google Scholar
  23. 23.
    K. Sowka, M. Weel, S. Cauchi, L. Cockins, A. Kumarakrishnan, Can. J. Phys. 83, 907 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Z. Zhang, X. Wang, Q. Lin, Opt. Exp. 17, 10372 (2009) CrossRefADSGoogle Scholar
  25. 25.
  26. 26.
    D. Milic, W. Lu, M.D. Hoogerland, M. Blacksell, K.G.H. Baldwin, S.J. Buckman, Rev. Sci. Instrum. 68, 3657 (1997) CrossRefADSGoogle Scholar
  27. 27.
    H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan, Appl. Phys. B 76, 33 (2003) CrossRefADSGoogle Scholar
  28. 28.
    E. Figueroa, F. Vewinger, J. Appel, A.T. Lvovsky, Opt. Lett. 31, 2625 (2006) CrossRefADSGoogle Scholar
  29. 29.
    J. Rutman, F.L. Walls, Proc. IEEE 79, 952, 1991 Google Scholar
  30. 30.
    A. Ray, Can. J. Phys. 86, 351 (2008) CrossRefADSGoogle Scholar
  31. 31.
    J.A. Barnes et al., IEEE Trans. Instrum. Meas. 20, 105 (1971) CrossRefGoogle Scholar
  32. 32.
    T. Day, E.K. Gustafson, R.L. Byer, IEEE J. Quant. Electron. 28, 1106, (1992) Google Scholar
  33. 33.
    K. Kuboki, M. Ohtsu, IEEE J. Quant. Electron. 23, 388 (1987) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Y. B. Kale
    • 1
  • A. Ray
    • 1
  • N. Singh
    • 2
  • Q. V. Lawande
    • 3
  • B. N. Jagatap
    • 2
    • 4
    Email author
  1. 1.Laser & Plasma Technology DivisionMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Theoretical Physics DivisionMumbaiIndia
  4. 4.Atomic & Molecular Physics DivisionMumbaiIndia

Personalised recommendations