Advertisement

The European Physical Journal D

, Volume 61, Issue 1, pp 39–50 | Cite as

Stopping of swift hydrogen diclusters: oscillator model

  • P. SigmundEmail author
  • A. Schinner
Article

Abstract.

Enhanced stopping of swift hydrogen diclusters has been analysed theoretically. The target has been modeled as a gas of harmonic-oscillator atoms of variable density. This model predicts a proximity effect, i.e., enhanced stopping at high beam energy, and an oscillatory behavior at low energy. Both features get less pronounced with increasing target density due to increased screening of the ion-target interaction by polarization of the medium. Static screening by electrons accompanying the cluster likewise reduces the proximity effect. The Barkas-Andersen correction has been estimated in the \(Z_1^3\) limit. Our findings are in contrast with measurements on SiO2 [S.M. Shubeita et al., Phys. Rev. B 77, 115327 (2008)] which showed a pronounced step in the energy dependence of the proximity effect.

Keywords

Internuclear Distance Oscillator Model Shell Correction Plasmon Excitation Target Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.R. Arista, Nucl. Instr. Methods B 164-165, 108 (2000) CrossRefADSGoogle Scholar
  2. 2.
    R.I. Ewing, IRE Trans. Nucl. Sci. 9, 207 (1962) CrossRefADSGoogle Scholar
  3. 3.
    W. Brandt, A. Ratkowski, R.H. Ritchie, Phys. Rev. Lett. 33, 1325 (1974) CrossRefADSGoogle Scholar
  4. 4.
    N.R. Arista, Phys. Rev. B 18, 1 (1978) CrossRefADSGoogle Scholar
  5. 5.
    J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 8, 1 (1954) Google Scholar
  6. 6.
    J. Steinbeck, K. Dettmann, J. Phys. C 11, 2907 (1978) CrossRefADSGoogle Scholar
  7. 7.
    G. Basbas, R.H. Ritchie, Phys. Rev. A 25, 1943 (1982) CrossRefADSGoogle Scholar
  8. 8.
    E. Ray, R. Kirsch, H.H. Mikkelsen, J.C. Poizat, J. Remillieux, Nucl. Instr. Methods B 69, 133 (1992) CrossRefADSGoogle Scholar
  9. 9.
    J. Jensen, H.H. Mikkelsen, Nucl. Instr. Methods B 115, 39 (1996) CrossRefADSGoogle Scholar
  10. 10.
    J. Jensen, P. Sigmund, Phys. Rev. A 61, 032903 (2000) CrossRefADSGoogle Scholar
  11. 11.
    J.D. Jackson, Classical electrodynamics (John Wiley & Sons, New York, 1975) Google Scholar
  12. 12.
    S.M. Shubeita, M.A. Sortica, P.L. Grande, J.F. Dias, N.R. Arista, Phys. Rev. B 77, 115327 (2008) CrossRefADSGoogle Scholar
  13. 13.
    P. Sigmund, U. Haagerup, Phys. Rev. A 34, 892 (1986) CrossRefADSGoogle Scholar
  14. 14.
    A. Belkacem, P. Sigmund, Nucl. Instr. Methods B 48, 29 (1990) CrossRefADSGoogle Scholar
  15. 15.
    S.M. Shubeita, R.C. Fadanelli, J.F. Dias, P.L. Grande, C.D. Denton, I. Abril, R. Garcia-Molina, N.R. Arista, Phys. Rev. B 80, (2009) Google Scholar
  16. 16.
    H.H. Mikkelsen, P. Sigmund, Phys. Rev. A 40, 101 (1989) CrossRefADSGoogle Scholar
  17. 17.
    H.H. Mikkelsen, E.H. Mortensen, Nucl. Instr. Methods B 48, 39 (1990) CrossRefADSGoogle Scholar
  18. 18.
    N.R. Arista, V.H. Ponce, J. Phys. C 8, L001 (1975) CrossRefGoogle Scholar
  19. 19.
    W. Brandt, R.H. Ritchie, Nucl. Instrum. Methods 132, 43 (1976) CrossRefADSGoogle Scholar
  20. 20.
    W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982) CrossRefADSGoogle Scholar
  21. 21.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1964) Google Scholar
  22. 22.
    J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996) CrossRefADSGoogle Scholar
  23. 23.
    P. Sigmund, Particle penetration and radiation effects, bd. 151 af Springer Series in Solid-State Sciences (Springer, Berlin, 2006) Google Scholar
  24. 24.
    J.C. Ashley, R.H. Ritchie, W. Brandt, Phys. Rev. B 5, 2393 (1972) CrossRefADSGoogle Scholar
  25. 25.
    J. Lindhard, Nucl. Instrum. Methods 132, 1 (1976) CrossRefADSGoogle Scholar
  26. 26.
    P. Sigmund, A. Schinner, Phys. Scr. T 92, 222 (2001) ADSGoogle Scholar
  27. 27.
    J. Oddershede, J.R. Sabin, P. Sigmund, Phys. Rev. Lett. 51, 1332 (1983) CrossRefADSGoogle Scholar
  28. 28.
    J. Lindhard, A. Winther, Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1964) Google Scholar
  29. 29.
    P. Sigmund, Nucl. Instr. Methods B 67, 11 (1992) CrossRefADSGoogle Scholar
  30. 30.
    C. Tarrio, S.E. Schnatterly, J. Opt. Soc. Am. B 10, 952 (1993) CrossRefADSGoogle Scholar
  31. 31.
    ICRU, Stopping of ions heavier than helium, ICRU Report (Oxford University Press, Oxford, 2005), Vol. 73 Google Scholar
  32. 32.
    P. Sigmund, A. Schinner, Nucl. Instr. Methods B 195, 64 (2002) CrossRefADSGoogle Scholar
  33. 33.
    I. Abril, M. Behar, R. Garcia-Molina, R.C. Fadanelli, L.C.C.M. Nagamine, P.L. Grande, L. Schunemann, C.D. Denton, N.R. Arista, E.B. Saitovitch, Eur. Phys. J. D 54, 65 (2009) CrossRefADSGoogle Scholar
  34. 34.
    R.D. Mui\(\tilde{{\rm n}}\)o, A. Salin, Phys. Rev. B 62, 5207 (2000) CrossRefADSGoogle Scholar
  35. 35.
    N.R. Arista, A.F. Lifschitz, Phys. Rev. A 59, 2719 (1999) CrossRefADSGoogle Scholar
  36. 36.
    N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 18, 1 (1948) Google Scholar
  37. 37.
    P. Sigmund, A. Schinner, Eur. Phys. J. D 12, 425 (2000) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics and ChemistryUniversity of Southern DenmarkOdense MDenmark
  2. 2.Institut für Experimentalphysik, Johannes Kepler UniversitätLinz-AuhofAustria

Personalised recommendations