The European Physical Journal D

, Volume 61, Issue 1, pp 207–214 | Cite as

Quantum correlations and fluctuations in the pulsed light produced by a synchronously pumped optical parametric oscillator below its oscillation threshold

  • V. A. Averchenko
  • Yu. M. GolubevEmail author
  • C. Fabre
  • N. Treps


We present a simple quantum theory for the pulsed light generated by a synchronously pumped optical parametric oscillator (SPOPO) in the degenerate case where the signal and idler trains of pulses coincide, below threshold and neglecting all dispersion effects. Our main goal is to precise in the obtained quantum effects, which ones are identical to the c.w. case and which ones are specific to the SPOPO. We demonstrate in particular that the temporal correlations have interesting peculiarities: the quantum fluctuations at different times within the same pulse turn out to be totally not correlated, whereas they are correlated between nearby pulses at times that are placed in the same position relative to the center of the pulses. The number of significantly correlated pulses is of the order of cavity finesse. We show also that there is perfect squeezing at noise frequencies \(\Omega_m\) = 2π m/T R (m = 0, 1, 2,\(\ldots\) where T R is the pulse train period) when one approaches the threshold from below on the signal field quadrature measured by a balanced homodyne detection with a local oscillator of very short duration compared to the SPOPO pulse length.


Quantum Correlation Pump Pulse Signal Pulse Optical Parametric Oscillator Local Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-A. Bachor, T.C. Ralph, A Guide To Experiments In Quantum Optics, 2nd edn. (Wiley-VCH, Berlin, 2003) Google Scholar
  2. 2.
    R.M. Shelby, M. Rosenbluh, Appl. Phys. B 55, 226 (1992) CrossRefADSGoogle Scholar
  3. 3.
    G.J. de Valcárcel, G. Patera, N. Treps, C. Fabre, Phys. Rev. A 74, 061801 (2006) CrossRefADSGoogle Scholar
  4. 4.
    N.C. Menicucci, S.T. Flammia, O. Pfister, Phys. Rev. Lett. 101, 130501 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Lectures on Quantum Information, edited by D. Bruß, G. Leuchs (Wiley-VCH, Berlin, 2003) Google Scholar
  6. 6.
    B. Lamine, C. Fabre, N. Treps, Phys. Rev. Lett. 101, 123601 (2008) CrossRefADSGoogle Scholar
  7. 7.
    G. Patera, N. Treps, C. Fabre, G.J. de Valcárcel, Eur. Phys. J. D 56, 123 (2010) CrossRefADSGoogle Scholar
  8. 8.
    F. Rana, R.J. Ram, H. Haus, IEEE J. Quantum Electron. 40, 41 (2004) CrossRefADSGoogle Scholar
  9. 9.
    M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999) CrossRefADSGoogle Scholar
  10. 10.
    S. Reynaud, C. Fabre, E. Giacobino, J. Opt. Soc. Am. B 4, 1520 (1987) CrossRefADSGoogle Scholar
  11. 11.
    R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985) CrossRefADSGoogle Scholar
  12. 12.
    A.E. Dunlop, E.H. Huntington, C.C. Harb, T.C. Ralph, Phys. Rev. A 73, 013817 (2006) CrossRefADSGoogle Scholar
  13. 13.
    R.J. Senior et al., Opt. Express 15, 5310 (2007) CrossRefADSGoogle Scholar
  14. 14.
    J.W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985) Google Scholar
  15. 15.
    M.F. Becker, D.J. Kuizenga, D.W. Phillion, A.E. Siegman, J. Appl. Phys. 45, 3996 (1974) CrossRefADSGoogle Scholar
  16. 16.
    S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses (AIP, New York, 1992) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. A. Averchenko
    • 1
  • Yu. M. Golubev
    • 1
    Email author
  • C. Fabre
    • 2
  • N. Treps
    • 2
  1. 1.V. A. Fock Physics Institute, St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6Paris Cedex 05France

Personalised recommendations