Advertisement

The European Physical Journal D

, Volume 62, Issue 1, pp 73–80 | Cite as

Nonlinearity and nonequilibrium together in Nature: wind waves in the open ocean

Wind-excited waves
  • Y. Pomeau
  • M. Le BerreEmail author
Regular Article

Abstract.

We derive scaling laws for the steady spectrum of wind excited waves, neglecting surface tension and taking air and water as inviscid, an approximation valid at large wind speed. Independently of the wind speed, there exists an unique (small) dimensionless parameter ϵ, the ratio of the mass densities of the two fluids (air and water). The smallness of ϵ allows to derive some important average properties of the wave system. The average square slope of the waves is, as observed, a small but not very small quantity, because it is of order |ln(ϵ 2)|-1. This supports the often used assumption of small nonlinearity in the wave-wave interaction. We introduce an equation to be satisfied by the two-point correlation of the height fluctuations. Lastly we reconsider the formation of swell, that is the relationship between the randomness of waves and the observation of quasi monochromatic water waves.

Keywords

Wind Speed Momentum Distribution Water Wave Wind Wave Wave System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Pierson Jr., L. Moskowitz, J. Geophys. Res. 69, 5181 (1964)CrossRefADSGoogle Scholar
  2. 2.
    R. Gelci, H. Cazalé, J. Vassal, Bulletin d’information du Comité d’Océanographie et d’Étude des Côtes 9, 416 (1957)Google Scholar
  3. 3.
    K. Hasselmann, J. Fluid Mech. 12, 481 (1962)CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    K. Hasselmann, Boundary-Layer Meteorol. 6, 107 (1974)CrossRefADSGoogle Scholar
  5. 5.
    S. Hasselmann, K. Hasselmann, J. Allender, T.P. Barnett, J. Phys. Oceanogr. 15, 1378 (1985)CrossRefADSGoogle Scholar
  6. 6.
    Y. Pomeau, Nonlinearity 5, 707 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    S.I. Badulin, A.N. Pushkarev, D. Resio, V.E. Zakharov, Nonlinear Proc. Geophys. 12, 891 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Y. Pomeau, M. Le Berre, Topics in the theory of wave-breaking, to appear in Ann. Inst. Henri Poincarré (2010)Google Scholar
  9. 9.
    J. Amorocho, J.J. DeVries, J. Geophys. Res. C: Oceans Atmos. 85, 433 (1980)CrossRefADSGoogle Scholar
  10. 10.
    M.S. Longuet-Higgins, Proc. Roy. Soc. A 310, 151 (1969)CrossRefADSGoogle Scholar
  11. 11.
    M.S. Longuet-Higgins, Proc. Roy. Soc. A 331, 445 (1969)ADSGoogle Scholar
  12. 12.
    S.A. Hsu, J. Waterway Port Coast. Ocean Eng. 129, 174 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, M. Santa-Maria, Atmos. Chem. Phys. Discuss. 8, 2771 (2008)CrossRefADSGoogle Scholar
  14. 14.
    J. Wu, J. Fluid Mech. 79, 463 (1977)CrossRefADSGoogle Scholar
  15. 15.
    Asymptotics beyond all orders, edited by H. Segur, S. Tanveer, H. Levine, Nato ASI series, Series B Physics (Plenum press, New York, 1991), Vol. 284, Proceedings of a Nato ARW at La Jolla CA (1991)Google Scholar
  16. 16.
    D.J. Webb, Deep-sea Res. 25, 279 (1978)CrossRefGoogle Scholar
  17. 17.
    Y. Pomeau, C.R. Acad. Sci. Paris Sér. B 265, 24 (1967)Google Scholar
  18. 18.
    R. Lacaze, et al. Physica D 152, 153, 779 (2001)CrossRefMathSciNetGoogle Scholar
  19. 19.
    C. Josserand, Y. Pomeau, S. Rica, J. Low Temp. Phys. 145, 231 (2006)CrossRefADSGoogle Scholar
  20. 20.
    T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)CrossRefzbMATHADSGoogle Scholar
  21. 21.
    K. Trulsen, I. Kliakhandler, K.B. Dysthe, M. Velarde, Phys. Fluids 12, 2432 (2000)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Y. Pomeau, M.A. Brachet, S. Métens, S. Rica, C.R. Acad. Sci. Paris Sér. IIb Méc. Phys. Astr. 327, 791 (1999).zbMATHADSGoogle Scholar
  23. 23.
    T. Allemand, KRM 2, 379 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Institut des Sciences Moléculaires d’Orsay ISMO-CNRS, Université Paris-Sud, Bt. 210Orsay CedexFrance

Personalised recommendations