The European Physical Journal D

, Volume 62, Issue 1, pp 67–71 | Cite as

Stochastic dynamics, efficiency and sustainable power production

  • M. MoreauEmail author
  • B. Gaveau
  • L.S. Schulman


In the framework of stochastic thermodynamics, we give a precise expression of power dissipation in a heat engine, and study the relation between entropy and power dissipation. Using these relations, we propose a reasonable and general definition of efficiency for thermal engines in a non-equilibrium stationary state. This definition, different from Carnot efficiency, seems appropriate to the concerns of sustainable development. We show that non-zero dissipation is necessary for producing non-vanishing power. Furthermore, close to equilibrium and even in much broader situations, when power production is maximum with respect to relevant variables the power dissipation is at less equal to the power delivered to a mechanical, external system, and the corresponding “sustainable efficiency” is at most ½. From this result, we deduce a new upper bound for Carnot efficiency at maximum power. It is compared to similar, but different upper bounds obtained previously by other authors.


Power Dissipation Entropy Production Power Production Stochastic Dynamic Entropy Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Carnot, Réflexions sur la Puissance Motrice du Feu set sur les Machines Propres à Développer cette Puissance (book published at the author’s expenses, Paris, 1824)Google Scholar
  2. 2.
    J. Yvon, The Saclay reactor: two years experience on heat transfer by means of a compressed gas, Proceedings of the International Conference on Peaceful Uses of Atomic Energy (Geneva, 1955), p. 387Google Scholar
  3. 3.
    P. Chambadal, Les Centrales Nucléaires (Armand Colin, Paris, 1957)Google Scholar
  4. 4.
    I.I. Novikov, J. Nucl. Energy II 7, 125 (1958)Google Scholar
  5. 5.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)CrossRefADSGoogle Scholar
  6. 6.
    L. Jiu-Li, C. Van den Broeck, G. Nicolis, Z. Phys. B 56, 165 (1984)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)CrossRefADSGoogle Scholar
  8. 8.
    L. Chen, C. Wu, F. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)CrossRefADSGoogle Scholar
  10. 10.
    T. Schmiedl, U. Seifert, Europhys. Lett. 81, 20003 (2008)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. Esposito, U. Harbola, S. Mukamel, Phys. Rev. E 76, 031132 (2007)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Y. Izumida, K. Okuda, Europhys. Lett. 83, 60003 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Y. Izumida, K. Okuda, Phys. Rev. E 80, 021121 (2009)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Z.C. Tu, J. Phys. A 41, 312003 (2008)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    M. Esposito, K. Lindenberg, C. Van den Broeck, Europhys. Lett. 85, 60010 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009)CrossRefADSGoogle Scholar
  17. 17.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. E 81, 041106 (2010)CrossRefADSGoogle Scholar
  18. 18.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Lett. A 372, 3415 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. E 79, 010102 (2009)CrossRefADSGoogle Scholar
  20. 20.
    B. Gaveau, L.S. Schulman, J. Math. Phys. 39, 1517 (1996)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    B. Gaveau, L.S. Schulman, J. Stat. Phys. 110, 1317 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    B. Gaveau, L.S. Schulman, Phys. Rev. E 73, 036124 (2006)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    G. Gallavotti, E. Cohen, Phys. Rev. Lett. 74, 2694 (1995)CrossRefADSGoogle Scholar
  24. 24.
    G. Gallavotti, E. Cohen, J. Stat. Phys. 80, 931 (1995)CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    D. Andrieux, P. Gaspard, J. Stat. Phys. 127, 107 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. Lett. 105, 060601 (2010)CrossRefADSGoogle Scholar
  28. 28.
    T. Cover, J. Thomas, Elements of Information Theory (Wiley, NY, 1991)Google Scholar
  29. 29.
    M. Esposito, K. Lindenberg, C. Van den Broeck, J. Stat. Mech. P01008 (2010)Google Scholar
  30. 30.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, eprint arXiv:cond.mat.1008.2464v1 (2010)Google Scholar
  31. 31.
    K.H. Hoffmann, J. Burzler, A. Fischer, M. Schaller, S. Schubert, J. Non-Equilib. Thermodyn. 28, 233 (2003)CrossRefADSGoogle Scholar
  32. 32.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Université Pierre et Marie CurieParis Cedex 05France
  2. 2.Université Pierre et Marie Curie-CNRS, LPTMC (UMR 7600)Paris Cedex 05France
  3. 3.Clarkson UniversityPotsdamUSA

Personalised recommendations