Advertisement

The European Physical Journal D

, Volume 61, Issue 1, pp 71–80 | Cite as

All-electron scalar relativistic calculation on the interaction between nitric monoxide and small gold cluster

  • X. J. KuangEmail author
  • X. Q. WangEmail author
  • G. B. Liu
Article

Abstract.

An all-electron scalar relativistic calculation on Au n NO (n = 1–10) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. The small gold cluster would like to bond with nitric and the nitric monoxide molecule prefers to occupy the on-top and single fold coordination site. The Au n structures in all Au n NO clusters are only distorted slightly and still keep the planar structures. With the bend of Au-N-O bond, the structures of Au n NO clusters evolve from the 2D structure to 3D structure. The most favorable adsorption between small gold cluster and nitric monoxide molecule takes place in the case that nitric monoxide molecule is adsorbed onto an odd-numbered pure Au n cluster and becomes odd-numbered Au n NO cluster with even number of valence electrons. The scalar relativistic effect strengthens the Au–Au, Au–N interaction and weakens the N–O interaction, appearing as the shorter Au–Au, Au–N bond-length and the longer N–O bond-length. The differences between our work and previous work are believed to be the reflection of the scalar relativistic effect.

Keywords

Adsorption Energy Gold Cluster Spin Multiplicity Vertical Ionization Potential Small Gold Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, Catal. Lett. 51, 53 (1998) CrossRefGoogle Scholar
  2. 2.
    G.C. Bond, D. Thompson, Catal. Rev. Sci. Eng. 41, 319 (1999) CrossRefGoogle Scholar
  3. 3.
    M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998) CrossRefADSGoogle Scholar
  4. 4.
    M. Harut, Chem. Rec. 3, 75 (2000) CrossRefGoogle Scholar
  5. 5.
    M.C. Daniel, D. Astruct, Chem. Rev. 104, 293 (2004) CrossRefGoogle Scholar
  6. 6.
    F. Boccuzzi, A.J. Chiorino, Phys. Chem. B 104, 5414 (2000) CrossRefGoogle Scholar
  7. 7.
    H. Hakkinen, U. Landman, J. Am. Chem. Soc. 123, 9704 (2001) CrossRefGoogle Scholar
  8. 8.
    W.T. Wallace, R.W. Whetten, J. Am. Chem. Soc. 124, 7499 (2002) CrossRefGoogle Scholar
  9. 9.
    N. Lopez, J.K. Norskov, J. Am. Chem. Soc. 124, 11262 (2002) CrossRefGoogle Scholar
  10. 10.
    L.M. Molina, B. Hammer, Phys. Rev. Lett. 90, 206102 (2003) CrossRefADSGoogle Scholar
  11. 11.
    M.L. Kimble, A.W. Castleman, R. Mitric Jr., C. Burgel, V. Bonacic, Koutecky, J. Am. Chem. Soc. 126, 2526 (2004) CrossRefGoogle Scholar
  12. 12.
    A. Ueda, M. Haruta, Gold Bull. 32, 3 (1999) CrossRefGoogle Scholar
  13. 13.
    A. Citra, X. Wang, L. Andrews, J. Phys. Chem. A 106, 3287 (2002) CrossRefGoogle Scholar
  14. 14.
    D. Torres, S. Gonzalez, K.M. Neyman, F. Illas, Chem. Phys. Lett. 422, 412 (2006) CrossRefADSGoogle Scholar
  15. 15.
    M.A. Debeila, N.J. Coville, M.S. Scurrell, G.R. Hearne, Catal. Today 72, 79 (2002) CrossRefGoogle Scholar
  16. 16.
    F. Solymosi, T. Bansagi, T.S. Zakar, Catal. Lett. 87, 7 (2003) CrossRefGoogle Scholar
  17. 17.
    F. Solymosi, T. Bansagi, T.S. Zakar, Phys. Chem. Chem. Phys. 5, 4724 (2003) CrossRefGoogle Scholar
  18. 18.
    X.L. Ding, Z.Y. Li, J.L. Yang, J.G. Hou, Q.S. Zhu, J. Chem. Phys. 121, 2558 (2004) CrossRefADSGoogle Scholar
  19. 19.
    A. Endou, N. Ohashi, S. Takami, M. Kubo, A. Miyamoto, E. Broclawik, Topics Catal. 11, 271 (2000) CrossRefGoogle Scholar
  20. 20.
    W.H. Zhang, Z.Y. Li, Y. Luo, J.L. Yang, J. Chem. Phys. 129, 134708 (2008) CrossRefADSGoogle Scholar
  21. 21.
    P.K. Jain, Struct. Chem. 16, 421 (2005) CrossRefGoogle Scholar
  22. 22.
    S.N. Datta, C.S. Ewig, J.R. VanWazer, Chem. Phys. Lett. 57, 83 (1978) CrossRefADSGoogle Scholar
  23. 23.
    Y.S. Lee, W.C. Ermler, K.S. Pitzer, J. Chem. Phys. 67, 5861 (1977) CrossRefADSGoogle Scholar
  24. 24.
    H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002) CrossRefADSGoogle Scholar
  25. 25.
    E.M. Fernandez, J.M. Soler, L.L. Garzon, C. Balbas, Phys. Rev. B 70, 165403 (2004) CrossRefADSGoogle Scholar
  26. 26.
    H. Häkkinen, B. Yoon, U. Landman, J. Phys. Chem. A 107, 6168 (2003) CrossRefGoogle Scholar
  27. 27.
    H. Orita, N. Itoh, Y. Inada, Chem. Phys. Lett. 384, 271 (2004) CrossRefADSGoogle Scholar
  28. 28.
    Y.S. Lee, A.D. McLean, J. Chem. Phys. 76, 735 (1982) CrossRefADSGoogle Scholar
  29. 29.
    S.N. Datta, C.S. Ewig, Chem. Phys. Lett. 85, 443 (1982) CrossRefADSGoogle Scholar
  30. 30.
    B. Delley, J. Chem. Phys. 92, 508 (1990) CrossRefADSGoogle Scholar
  31. 31.
    B. Delley, J. Chem. Phys. 113, 7756 (2000) CrossRefADSGoogle Scholar
  32. 32.
    A. Deka, R.C. Deka, J. Mol. Struct. -Theochem 870, 83 (2008) CrossRefGoogle Scholar
  33. 33.
    G.B. Perez, I.L. Garzon, O. Novaro, J. Mol. Struct. -Theochem 493, 225 (1999) CrossRefGoogle Scholar
  34. 34.
    P. Pyykko, Angew. Chem. Int. Ed. 43, 4412 (2004) CrossRefGoogle Scholar
  35. 35.
    G.A. Bishea, M.D. Morse, J. Chem. Phys. 95, 5646 (1991) CrossRefADSGoogle Scholar
  36. 36.
    C. Jackschath, I. Rabin, W. Schulze, B. Bunsenges, Phys. Chem. 96, 1200 (1992) Google Scholar
  37. 37.
    H.P. Mao, H.Y. Wang, Y. Ni, G.L. Xu, Acta Physica Sinica 53, 1766 (2004) Google Scholar
  38. 38.
    M.A. Debeila, N.J. Coville, M.S. Scurrell, G.R. Hearne, Catal. Today 72, 79 (2002) CrossRefGoogle Scholar
  39. 39.
    M.A. Debeila, N.J. Coville, M.S. Scurrell, G.R. Hearne, Appl. Catal. A Gen. 291, 98 (2005) CrossRefGoogle Scholar
  40. 40.
    R. Grybos, L. Benco, T. Bučko, J. Hafner, J. Chem. Phys. 130, 104503 (2009) CrossRefADSGoogle Scholar
  41. 41.
    V.E. Matulis, O.A. Ivaskevich, Comput. Mater. Sci. 35, 268 (2006) CrossRefGoogle Scholar
  42. 42.
    S. Phala, G. Klatt, E.V. Steen, Chem. Phys. Lett. 395, 33 (2004) CrossRefADSGoogle Scholar
  43. 43.
    M.E. Eberhart, R.C. Handley, K.H. Johnson, Phys. Rev. B 29, 1097 (1984) CrossRefADSGoogle Scholar
  44. 44.
    A. Poater, M. Duran, P. Jaque, A. Toro-Labbe, M. Sola, J. Phys. Chem. B 110, 6526 (2006) CrossRefGoogle Scholar
  45. 45.
    J.A. Rodriguez, C.T. Campbell, J. Phys. Chem. 91, 2161 (1987) CrossRefGoogle Scholar
  46. 46.
    L. Padilla-Campos, J. Mol. Struct. -Theochem 851, 15 (2008) CrossRefGoogle Scholar
  47. 47.
    X.L. Ding, Z.Y. Li, J.L. Yang, J.G. Hou, Q.S. Zhu, J. Chem. Phys. 120, 9594 (2004) CrossRefADSGoogle Scholar
  48. 48.
    M. Zhang, L.M. He, L.X. Zhao, X.J. Feng, W. Cao, Y.H. Luo, J. Mol. Struct. -Theochem 911, 65 (2009) CrossRefGoogle Scholar
  49. 49.
    M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Rev. B 71, 155412 (2006) CrossRefGoogle Scholar
  50. 50.
    C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006) CrossRefADSGoogle Scholar
  51. 51.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.College of mathematics and physics, Chongqing universityChongqingP.R. China
  2. 2.School of scienceSouthwest university of science and technology, MianyangSichuanP.R. China

Personalised recommendations