Advertisement

The European Physical Journal D

, Volume 61, Issue 1, pp 171–180 | Cite as

Phase-space description of the magneto-optical trap

  • R. Romain
  • D. HennequinEmail author
  • P. Verkerk
Article

Abstract.

An exhaustive kinetic model for the atoms in a 1D magneto-optical trap is derived, without any approximations. It is shown that the atomic density is described by a Vlasov-Fokker-Planck equation, coupled with two simple differential equations describing the trap beam propagation. The analogy of such a system with plasmas is discussed. This set of equations is then simplified through some approximations, and it is shown that corrective terms have to be added to the models usually used in this context.

Keywords

Cold Atom Phase Space Density Trapping Force Zeeman Shift Trapping Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Guidoni, P. Verkerk, J. Opt. B Quantum Semiclass. Opt. 1, R23 (1999) CrossRefADSGoogle Scholar
  2. 2.
    Cold Molecules: Theory, Experiment, Applications, edited by R. Krems, B. Friedrich, W.C. Stwalley (CRC Press, Boca Raton, 2009) Google Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) CrossRefADSGoogle Scholar
  4. 4.
    D. Wilkowski, J. Ringot, D. Hennequin, J.C. Garreau, Phys. Rev. Lett. 85, 1839 (2000) zbMATHCrossRefADSGoogle Scholar
  5. 5.
    G. Labeyrie, F. Michaud, R. Kaiser, Phys. Rev. Lett. 96, 023003 (2006) CrossRefADSGoogle Scholar
  6. 6.
    D. Hennequin, Eur. Phys. J. D 28, 135 (2004) CrossRefADSGoogle Scholar
  7. 7.
    A. di Stefano, M. Fauquembergue, P. Verkerk, D. Hennequin, Phys. Rev. A 67, 033404 (2003) CrossRefADSGoogle Scholar
  8. 8.
    A. di Stefano, P. Verkerk, D. Hennequin, Eur. Phys. J. D 30, 243 (2004) CrossRefADSGoogle Scholar
  9. 9.
    T. Pohl, G. Labeyrie, R. Kaiser, Phys. Rev. A 74, 023409 (2006) CrossRefADSGoogle Scholar
  10. 10.
    T.G. Walker, D.W. Sesko, C. Wieman, Phys. Rev. Lett. 64, 408 (1990) CrossRefADSGoogle Scholar
  11. 11.
    L. Pruvost, I. Serre, H.T. Duong, J. Jortner, Phys. Rev. A 61, 053408 (2000) CrossRefADSGoogle Scholar
  12. 12.
    J.T. Mendonça, R. Kaiser, H. Terças, J. Loureiro, Phys. Rev. A 78, 013408 (2008) CrossRefADSGoogle Scholar
  13. 13.
    D.W. Sesko, T.G. Walker, C. Wieman, J. Opt. Soc. Am. B 8, 946 (1991) CrossRefADSGoogle Scholar
  14. 14.
    H. Neunzert, M. Pulvirenti, L. Triolo, Math. Meth. Appl. Sci. 6, 527 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Ramos-Caro, G.A. González, Class. Quan. Grav. 25, 045011 (2008) CrossRefADSGoogle Scholar
  16. 16.
    D. Benedetto, E. Caglioti, F. Golse, M. Pulvirenti, Comm. Math. Sci. 2, 121 (2004) zbMATHMathSciNetGoogle Scholar
  17. 17.
    R. Warnock, Nucl. Instrum. Methods Phys. Res. A 561, 186 (2006) CrossRefADSGoogle Scholar
  18. 18.
    J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) CrossRefADSGoogle Scholar
  19. 19.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, New York, 2004) Google Scholar
  20. 20.
    B.R. Mollow, Phys. Rev. 188, 1969 (1969) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire PhLAM, CNRS UMR 8523, Bât. P5, Université Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations