The European Physical Journal D

, Volume 60, Issue 3, pp 517–522 | Cite as

Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

Topical issue: Microplasmas: Scientific Challenges and Technological opportunities

Abstract

Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nonequilibrium Atmospheric Pressure Air Plasmas, edited by K. Becker, U. Kogelschatz, K.H. Schoenbach, R. Barker (Institute of Physics Publishing, Bristol and Philadelphia, 2005), Chap. 10 Google Scholar
  2. 2.
    G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Processes Polym. 7, 194 (2009) CrossRefGoogle Scholar
  3. 3.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 1 (2009) CrossRefGoogle Scholar
  4. 4.
    G. Daeschlein, T. van Woedtke, E. Kindel, R. Brandenburg, K.-D. Weltmann, M. Jünger, Plasma Processes Polym. 7, 224 (2009) CrossRefGoogle Scholar
  5. 5.
    J. Choi, A.-A.H. Mohamed, S.K. Kang, K.C. Woo, K.T. Kim, J.K. Lee, Plasma Processes Polym. 7, 258 (2010) CrossRefGoogle Scholar
  6. 6.
    X.T. Deng, J.J. Shi, M.G. Kong, J. Appl. Phys. 101, 074701 (2007) CrossRefADSGoogle Scholar
  7. 7.
    H.W. Lee, S.H. Nam, A.-A.H. Mohamed, G.C. Kim, J.K. Lee, Plasma Processes Polym. 7, 274 (2009) CrossRefGoogle Scholar
  8. 8.
    H. Yasuda, T. Miura, H. Kurita, K. Takashima, A. Mizuno, Plasma Processes Polym. 7, 301 (2010) CrossRefGoogle Scholar
  9. 9.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Processes Polym. 5, 503 (2008) CrossRefGoogle Scholar
  10. 10.
    D. Harbec, J.-L. Meunier, L. Guo, J. Jureidini, Carbon 45, 2054 (2007) CrossRefGoogle Scholar
  11. 11.
    B.A. Niemira, J. Sites, J. Food Protection 71, 1357 (2008) Google Scholar
  12. 12.
    A. Koinuma, H. Ohkubo, T. Hashimoto, K. Inomata, T. Sshiraishi, A. Miyanaga, S. Hayashi, Appl. Phys. Lett. 60, 816 (1992) CrossRefADSGoogle Scholar
  13. 13.
    G.G. Bondarenko, V.V. Andreev, V.M. Maslovsky, A.A. Stolyarov, V.E. Drach, Thin Solid Films 427, 377 (2003) CrossRefADSGoogle Scholar
  14. 14.
    E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma Source. Sci. Technol. 11, 383 (2002) CrossRefADSGoogle Scholar
  15. 15.
    E.J.S. Raymond, E. Stoffels, R. Walraven, J.A.T. Paul, A.K. Ruben, IEEE Trans. Plasma Sci. 32, 187 (2004) CrossRefGoogle Scholar
  16. 16.
    R. Foest, E. Kindel, A. Ohl, M. Stieber, K.-D. Weltmann, Plasma Phys. Control. Fusion 47, B525 (2005) CrossRefGoogle Scholar
  17. 17.
    V. Kapicka, M. Sıcha, M. Klima, Z. Hubicka, J. Tous, A. Brablec, P. Slavicek, J.F. Behnke, M. Tichy, R. Vaculık, Plasma Source. Sci. Technol. 8, 15 (1999) CrossRefADSGoogle Scholar
  18. 18.
    Z. Cao, J.L. Walsh, M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009) CrossRefADSGoogle Scholar
  19. 19.
    R.M. Sankaran, K.P. Giapis, J. Appl. Phys. 92, 2406 (2002) CrossRefADSGoogle Scholar
  20. 20.
    M. Laroussi, X. Lu, Appl. Phys. Lett. 87, 113902 (2005) CrossRefADSGoogle Scholar
  21. 21.
    C. Jiang, M.T. Chen, A. Gorur, C. Schaudinn, D.E. Jaramillo, J.W. Costerton, P.P. Sedghizadeh, P.T. Vernier, M.A. Gundersen, Plasma Processes Polym. 6, 479 (2009) CrossRefGoogle Scholar
  22. 22.
    J.F. Kolb, A.-A.H. Mohamed, R.O. Price, R.J. Swanson, A. Bowman, R.L. Chiavarini, M. Stacey, K.H. Schoenbach, Appl. Phys. Lett. 92, 241501 (2008) CrossRefADSGoogle Scholar
  23. 23.
    K.H. Schoenbach, A. El-Habachi, W. Shi, M. Ciocca, Plasma Source. Sci. Technol. 6, 468 (1997) CrossRefADSGoogle Scholar
  24. 24.
    K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, 55 (2007) CrossRefGoogle Scholar
  25. 25.
    A.-A.H. Mohamed, R. Block, K.H. Schoenbach, IEEE Trans. Plasma Sci. 30, 182 (2002) CrossRefADSGoogle Scholar
  26. 26.
    R.H. Stark, K.H. Schoenbach, Appl. Phys. Lett. 74, 3770 (1999) CrossRefADSGoogle Scholar
  27. 27.
    H. Feng, P. Sun, Y. Chai, G. Tong, J. Zhang, W. Zhu, J. Fang, IEEE Trans. Plasma Sci. 37, 121 (2009) CrossRefADSGoogle Scholar
  28. 28.
    R. Block, O. Toedter, K.H. Schoenbach, Gas Temperature Measurements in High Pressure Glow Discharges in Air, Proc. of the 30th AIAA Plasma Dynamics and Lasers Conference, Norfolk, VA, June 28–July 1, 1999, paper AIAA-99-3434 Google Scholar
  29. 29.
    S. Novopashin, A. Muriel, J. Exp. Theor. Phys. 95, 262 (2002) CrossRefADSGoogle Scholar
  30. 30.
    D.D. Hsu, D.B. Graves, J. Phys. D 36, 2898 (2003) CrossRefADSGoogle Scholar
  31. 31.
    T. Deconinck, L.L. Raja, Plasma Processes Polym. 6, 335 (2009) CrossRefGoogle Scholar
  32. 32.
    J.P. Boeuf, L.C. Pitchford, K.H. Schoenbach, Appl. Phys. Lett. 86, 071501 (2005) CrossRefADSGoogle Scholar
  33. 33.
    F. Leipold, A.-A.H. Mohamed, K.H. Schoenbach, High electron density, atmospheric pressure air glow discharges, Conference Record of the 25th International Power Modulator Symposium, June 30–July 3, 2002, pp. 130–133 Google Scholar
  34. 34.
    V. Leveille, S. Clulombe, Plasma Source. Sci. Technol. 14, 467 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A.-A.H. Mohamed
    • 1
    • 2
  • J. F. Kolb
    • 3
  • K. H. Schoenbach
    • 3
  1. 1.Department of PhysicsFaculty of Science, Taibah UniversityAlmadinah AlmunawwarahSaudi Arabia
  2. 2.Physics DepartmentFaculty of Science, Beni-Suef UniversityBeni-SuefEgypt
  3. 3.Frank Reidy Research Center for Bioelectrics, Old Dominion UniversityNorfolkUSA

Personalised recommendations