The European Physical Journal D

, Volume 59, Issue 3, pp 521–523 | Cite as

Parameter estimation with mixed quantum states

  • D. BraunEmail author
Quantum Information


We consider quantum enhanced measurements with initially mixed states. We show very generally that for any linear propagation of the initial state that depends smoothly on the parameter to be estimated, the sensitivity is bound by the maximal sensitivity that can be achieved for any of the pure states from which the initial density matrix is mixed. This provides a very general proof that purely classical correlations cannot improve the sensitivity of parameter estimation schemes in quantum enhanced measurement schemes.


Entangle State Mixed State Pure State Separable State Classical Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Caves, Phys. Rev. D 23, 1693 (1981) CrossRefADSGoogle Scholar
  2. 2.
    A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, J.P. Dowling, Phys. Rev. Lett. 85, 2733 (2000) CrossRefADSGoogle Scholar
  3. 3.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994) zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, NJ, 1946) Google Scholar
  5. 5.
    V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Aspachs, J. Calsamiglia, R. Muñoz Tapia, E. Bagan, Phys. Rev. A 79, 033834 (2009) CrossRefADSGoogle Scholar
  7. 7.
    K. Modi, M. Williamson, H. Cable, V. Vedral, Entanglement versus classical correlations in quantum metrology with thermal states, [arXiv:1003.1174] Google Scholar
  8. 8.
    D. Braun, J. Martin, Decoherence-enhanced measurements, [arXiv:0902.1213v2] Google Scholar
  9. 9.
    J.A. Miszczak, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski, Quant. Inform. Comput. 9, 0103 (2009) Google Scholar
  10. 10.
    A. Fujiwara, Phys. Rev. A 63, 042304 (2001) CrossRefADSGoogle Scholar
  11. 11.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989) CrossRefADSGoogle Scholar
  12. 12.
    G. Goldstein, M.D. Lukin, P. Cappellaro, Quantum limits on parameter estimation, [arXiv:1001.4804v1] Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC)ToulouseFrance
  2. 2.CNRS, LPT (IRSAMC)ToulouseFrance

Personalised recommendations