Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 109–114 | Cite as

Modelling heavy-ion energy deposition in extended media

  • I. MishustinEmail author
  • I. PshenichnovEmail author
  • W. Greiner
Topical issue on Molecular level assessments of radiation biodamage

Abstract

We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 toolkit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water.

Keywords

PMMA Bragg Peak Fragmentation Reaction Carbon Nucleus Primary Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    M. Kramer, O. Jakel, T. Haberer, G. Kraft, D. Schardt, U. Weber, Phys. Med. Biol. 45, 3299 (2000) CrossRefGoogle Scholar
  3. 3.
    M. Kramer, M. Scholz, Phys. Med. Biol. 51, 1959 (2006) CrossRefGoogle Scholar
  4. 4.
    S. Agostinelli et al. (GEANT4 Collaboration), NIM 506, 250 (2003) Google Scholar
  5. 5.
    J. Allison et al. (GEANT4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006) Google Scholar
  6. 6.
    Geant4-Webpage, http://geant4.web.cern.ch/geant4/ (2009)
  7. 7.
    D. Sarrut, L. Guigues, Med. Phys. 35, 1452 (2008) CrossRefGoogle Scholar
  8. 8.
    A. Saitoh, A. Kimura, S. Tanaka, T Sasaki, IEEE Nuclear Science Symposium/Medical Imaging Conference, Oct. 26–Nov. 03, 2007, Honolulu HI, in 2007 IEEE Nuclear Science Symposium Conference Record, 1–11, 888 (2007) Google Scholar
  9. 9.
    Y. Kase, N. Kanematsu, T. Kanai, N. Matsufuji, Phys. Med. Biol. 51, N467 (2006) CrossRefGoogle Scholar
  10. 10.
    I. Pshenichnov, I. Mishustin, W. Greiner, Phys. Med. Biol. 50, 5493 (2005) CrossRefGoogle Scholar
  11. 11.
    I. Pshenichnov, I. Mishustin, W. Greiner, Phys. Med. Biol. 51, 6099 (2006) CrossRefGoogle Scholar
  12. 12.
    I. Pshenichnov, A. Larionov, I. Mishustin, W. Greiner, Phys. Med. Biol. 52, 7295 (2007) CrossRefGoogle Scholar
  13. 13.
    I. Pshenichnov, I. Mishustin, W. Greiner, MCHIT – Monte Carlo model for proton and heavy-ion therapy, Proc. International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008), p. 1343 Google Scholar
  14. 14.
    N. Matsufuji, A. Fukumura, M. Komori, T. Kanai, T. Kohno, Phys. Med. Biol. 48, 1605 (2003) CrossRefGoogle Scholar
  15. 15.
    E. Haettner, H. Iwase, D. Schardt, Radiat. Prot. Dosim. 122, 48 (2006) Google Scholar
  16. 16.
    Geant4 Physics Reference Manual, Chap. 26, The Geant4 Binary cascade, http://geant4.web.cern.ch/geant4/support/userdocuments.shtml
  17. 17.
    G. Folger, V.N. Ivanchenko, J.P. Wellisch, Eur. Phys. J. A 21, 407 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    E. Gradsztajn, F. Yiou, R. Klapisch, R. Bernas, Phys. Rev. Lett. 14, 436 (1965) ADSCrossRefGoogle Scholar
  20. 20.
    A.S. Botvina, Ye.S. Golubeva, A.S. Iljinov, Statistical simulation of the break-up of light nuclei in hadron-nucleus reactions, preprint INR P-0657, Moscow (1990) Google Scholar
  21. 21.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995) ADSCrossRefGoogle Scholar
  22. 22.
    Geant4 Physics Manual, Chap. 32, Fermi break-up model, http://geant4.web.cern.ch/geant4/support/userdocuments.shtml
  23. 23.
    V. Lara, J.P. Wellisch, Pre-equilibrium and equilibrium decays in Geant4, Proc. CHEP 2000: Computing in High Energy and Nuclear Physics, Feb. 2000, Padova, Italy, p. 52 Google Scholar
  24. 24.
    I. Pshenichnov, A. Botvina, I. Mishutin, W. Greiner, NIM B 268, 604 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    T. Kanai et al., Irradiation of 135 MeV/u carbon and neon beams for studies of radiation biology, NIRS-M-92 (HIMAC-004), NIRS, Chiba, Japan (1993) Google Scholar
  26. 26.
    L. Sihver, D. Schardt, T. Kanai, Jpn J. Med. Phys. 18, 1 (1998) Google Scholar
  27. 27.
    H. Kaizuka, Radiation dosimetry for heavy ion cancer therapy with CR-39 Solid State Track Detector, Master Thesis, University of Tokyo (1997) Google Scholar
  28. 28.
    K. Gunzert-Marx, D. Schardt, R.S. Simon, Radiat. Prot. Dosim. 110, 595 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Frankfurt Institute for Advanced StudiesJ.-W. Goethe UniversityFrankfurt am MainGermany
  2. 2.Kurchatov Institute, Russian Research CenterMoscowRussia
  3. 3.Institute for Nuclear Research, Russian Academy of ScienceMoscowRussia

Personalised recommendations