Advertisement

The European Physical Journal D

, Volume 59, Issue 3, pp 525–537 | Cite as

Proposal for a Raman X-ray free electron laser

  • Ph. BalcouEmail author
Ultraintense and Ultrashort Laser Fields

Abstract.

A scheme for an X-ray free electron laser is proposed, based on a Raman process occurring during the interaction between a moderately relativistic bunch of free electrons, and twin intense short pulse lasers interfering to form a transverse standing wave along the electron trajectories. In the high intensity regime of the Kapitza-Dirac effect, the laser ponderomotive potential forces the electrons into a lateral oscillatory motion, resulting in a Raman scattering process. I show how a parametric process is triggered, resulting in the amplification of the Stokes component of the Raman-scattered photons. Experimental operating parameters and implementations, based both on LINAC and Laser Wakefield Acceleration techniques, are discussed.

Keywords

Standing Wave Free Electron Laser High Harmonic Generation Twin Beam Light Standing Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Duguay, Rentzepis, Appl. Phys. Lett. 10, 350 (1967) CrossRefADSGoogle Scholar
  2. 2.
    P. Jaeglé et al., Phys. Lett. A 36, 167 (1971) CrossRefADSGoogle Scholar
  3. 3.
    P. Jaeglé, Coherent sources of XUV radiation (Springer Verlag, Berlin, 2006) Google Scholar
  4. 4.
    J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971) CrossRefADSGoogle Scholar
  5. 5.
    D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.I. Smith, Phys. Rev. Lett. 38, 892 (1977) CrossRefADSGoogle Scholar
  6. 6.
    J.B. Murphy, C. Pellegrini, J. Opt. Soc. Am. B 2, 259 (1985) CrossRefADSGoogle Scholar
  7. 7.
    C. Pellegrini, J. Stöhr, Nucl. Inst. Meth. A 500, 33 (2003) CrossRefADSGoogle Scholar
  8. 8.
    J. Arthur et al., Linac Coherent Light Source (LCLS) Conceptual Design Report, SLAC-R593 (Stanford, 2002) Google Scholar
  9. 9.
    T. Tanaka, T. Shintake, SCSS X-FEL Conceptual Design Report (RIKEN Harima Institute, Hyogo, Japan, 2005) Google Scholar
  10. 10.
    T. Shintake et al., Nat. Photon. 2, 297 (2006) CrossRefGoogle Scholar
  11. 11.
    V. Ayvazyan et al., Eur. Phys. J. D 37, 297 (2006) CrossRefADSGoogle Scholar
  12. 12.
    B.D. Patterson et al., New J. Phys. 12, 035012 (2010) CrossRefADSGoogle Scholar
  13. 13.
    P. Emma, LCLS commissioning team, Proceedings of the PAC conference (2009) Google Scholar
  14. 14.
    P. Gibbon, Short pulse laser interactions with matter: an introduction (Imperial College Press, London, 2005) Google Scholar
  15. 15.
    P. Sprangle, A. Ting, E. Esarey, A. Fisher, J. Appl. Phys. 72, 5032 (1992) CrossRefADSGoogle Scholar
  16. 16.
    P. Sprangle, A.T. Drobot, J. Appl. Phys. 50, 2652 (1979) CrossRefADSGoogle Scholar
  17. 17.
    P. Dobiasch, P. Meystre, M.O. Scully, IEEE J. Quantum Electron. 19, 1812 (1983) CrossRefADSGoogle Scholar
  18. 18.
    J. Gea-Banacloche, G.T. Moore, R.R. Schlicher, M.O. Scully, H. Walther, IEEE J. Quantum Electron. 23, 1558 (1987) CrossRefADSGoogle Scholar
  19. 19.
    J.C. Gallardo, R.C. Fernow, R. Palmer, C. Pellegrini, IEEE J. Quantum. Electron. 24, 1557 (1988) CrossRefADSGoogle Scholar
  20. 20.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The physics of free electron lasers (Springer Verlag, Berlin, 2000) Google Scholar
  21. 21.
    A. Bacci, M. Ferrario, C. Maroli, V. Petrillo, L. Serafini, Phys. Rev. ST Accel. Beams 9, 060704 (2006) CrossRefADSGoogle Scholar
  22. 22.
    R. Bonifacio, N. Piovella, M.M. Cola, L. Volpe, NIM 577, 745 (2007) CrossRefADSGoogle Scholar
  23. 23.
    R. Bonifacio, N. Piovella, M.M. Cola, L. Volpe, A. Schiavi, G.R.M. Robb, NIM 593, 69 (2008) CrossRefADSGoogle Scholar
  24. 24.
    H.K. Avetissian, G.F. Mkrtchian, Phys. Rev. E 65, 046505 (2002) CrossRefADSGoogle Scholar
  25. 25.
    F. Grüner et al., Appl. Phys. B 86, 431 (2007) CrossRefADSGoogle Scholar
  26. 26.
    K. Nakajima, Nature Phys. 4, 92 (2008) CrossRefADSGoogle Scholar
  27. 27.
    H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggins, D.A. Jaroszynski, Nature Phys. 4, 130 (2008) CrossRefADSGoogle Scholar
  28. 28.
    V. Petrillo, L. Serafini, P. Tomassini, Phys. Rev. ST Accel. Beams 11, 070703 (2008) CrossRefADSGoogle Scholar
  29. 29.
    P. Sprangle, B. Hafizi, J.R. Peñano, Phys. Rev. Accel. Beams 12, 050702 (2009) CrossRefADSGoogle Scholar
  30. 30.
    Ph. Zeitoun et al., Nature 431, 466 (2004) CrossRefADSGoogle Scholar
  31. 31.
    G. Lambert et al., Nature Phys. 4, 296 (2008) CrossRefGoogle Scholar
  32. 32.
    A. Klisnick et al., J. Opt. Soc. Am. B 17, 1093 (2000) CrossRefADSGoogle Scholar
  33. 33.
    Z. Bor, S. Szatmari, A. Müller, Appl. Phys. B 32, 101 (1983) CrossRefADSGoogle Scholar
  34. 34.
    J.-C. Chanteloup et al., J. Opt. Soc. Am. B 17, 151 (2000) CrossRefADSGoogle Scholar
  35. 35.
    S. Sebban, L. Charreyre, P. Balcou (to be published) Google Scholar
  36. 36.
    G. Pretzler, A. Kasper, K.J. Witte, Appl. Phys. B 70, 1 (2000) CrossRefADSGoogle Scholar
  37. 37.
    P.L. Kapitza, P.A.M. Dirac, Proc. Cambridge Philos. Soc. 29, 297 (1933) CrossRefGoogle Scholar
  38. 38.
    D.L. Freimund, K. Aflatooni, H. Batelaan, Nature 413, 142 (2001) CrossRefADSGoogle Scholar
  39. 39.
    T.W.B. Kibble, Phys. Rev. 150, 1060 (1968) CrossRefADSGoogle Scholar
  40. 40.
    P.H. Bucksbaum, D.W. Schumacher, M. Bashkansky, Phys. Rev. Lett. 61, 1182 (1988) CrossRefADSGoogle Scholar
  41. 41.
    M.V. Fedorov, K.B. Oganesyan, A.M. Prokhorov, App. Phys. Lett. 53, 353 (1988) CrossRefADSGoogle Scholar
  42. 42.
    M.V. Fedorov, S.P. Goreslavsky, V.S. Letokhov, Phys. Rev. E 55, 1015 (1997) CrossRefADSGoogle Scholar
  43. 43.
    S. Sepke, Y.Y. Lau, J.P. Holloway, D. Umstadter, Phys. Rev. E 72, 026501 (2005) CrossRefADSGoogle Scholar
  44. 44.
    T. Shiozawa, Classical Relativistic Electrodynamics (Springer Verlag, Berlin, 2004), pp. 199-208 Google Scholar
  45. 45.
    J.J. Thomson, J.A. Karush, Phys. Fluids 17, 1608 (1974) CrossRefADSGoogle Scholar
  46. 46.
    G. Laval, R. Pellat, D. Pesme, Phys. Rev. Lett. 36, 192 (1976) CrossRefADSGoogle Scholar
  47. 47.
    W.L. Kruer, The physics of laser plasma interactions (Addison-Wesley, 1988) Google Scholar
  48. 48.
    J.B. Rosenzweig et al., NIM 593, 39 (2008) CrossRefADSGoogle Scholar
  49. 49.
    X. Davoine et al., Phys. Rev. Lett. 102, 065001 (2009) CrossRefADSGoogle Scholar
  50. 50.
    C. Rechatin et al., Phys. Rev. Lett. 102, 164801 (2009) CrossRefADSGoogle Scholar
  51. 51.
    J.B. Rosenzweig et al., NIM 557, 87 (2006) CrossRefADSGoogle Scholar
  52. 52.
    D. Alesini et al., NIM 528, 586 (2004) CrossRefADSGoogle Scholar
  53. 53.
    M. Ferrario et al., Phys. Rev. Lett. 99, 234801 (2007) CrossRefADSGoogle Scholar
  54. 54.
    C. Hernandez-Gomez et al., J. Phys. IV France 133, 555 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Université de Bordeaux 1, Centre Lasers Intenses et Applications (CELIA), CNRS, CEATalence CedexFrance

Personalised recommendations