Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 177–193 | Cite as

Spatio-temporal cell dynamics in tumour spheroid irradiation

  • H. KempfEmail author
  • M. Bleicher
  • M. Meyer-Hermann
Topical issue on Molecular level assessments of radiation biodamage

Abstract

Multicellular tumour spheroids are realistic in vitro systems in radiation research that integrate cell-cell interaction and cell cycle control by factors in the medium. The dynamic reaction inside a tumour spheroid triggered by radiation is not well understood. Of special interest is the amount of cell cycle synchronisation which could be triggered by irradiation, since this would allow follow-up irradiations to exploit the increased sensitivity of certain cell cycle phases. In order to investigate these questions we need to support irradiation experiments with mathematical models. In this article a new model is introduced combining the dynamics of tumour growth and irradiation treatments. The tumour spheroid growth is modelled using an agent-based Delaunay/Voronoi hybrid model in which the cells are represented by weighted dynamic vertices. Cell properties like full cell cycle dynamics are included. In order to be able to distinguish between different cell reactions in response to irradiation quality we introduce a probabilistic model for damage dynamics. The overall cell survival from this model is in agreement with predictions from the linear-quadratic model. Our model can describe the growth of avascular tumour spheroids in agreement to experimental results. Using the probabilistic model for irradiation damage dynamics the classic ‘four Rs’ of radiotherapy can be studied in silico. We found a pronounced reactivation of the tumour spheroid in response to irradiation. A majority of the surviving cells is synchronized in their cell cycle progression after irradiation. The cell synchronisation could be actively triggered and should be exploited in an advanced fractionation scheme. Thus it has been demonstrated that our model could be used to understand the dynamics of tumour growth after irradiation and to propose optimized fractionation schemes in cooperation with experimental investigations.

Keywords

Cell Cycle Phase Linear Energy Transfer Quiescent Cell Tumour Spheroid Tumour Control Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Mueller-Klieser, J. Cancer Res. Clin. Oncol. 113, 101 (1987) CrossRefGoogle Scholar
  2. 2.
    J.P. Freyer, R.M. Sutherland, Can. Res. 46, 3504 (1986) Google Scholar
  3. 3.
    L.A. Kunz-Schughart, Cell Biol. Int. 23, 157 (1999) CrossRefGoogle Scholar
  4. 4.
    H. Withers, Advances in radiation biology 15, 241 (1975) Google Scholar
  5. 5.
    H.R. Withers, Cancer 55, 2086 (1985) CrossRefGoogle Scholar
  6. 6.
    A.J.G. Eric, J. Hall, Radiobiology for the Radiologist, 6th edn. (Lippincott Williams & Wilkins, 2005) Google Scholar
  7. 7.
    J.C. Horiot, P. Bontemps, W. van den Bogaert, R.L. Fur, D. van den Weijngaert, M. Bolla, J. Bernier, A. Lusinchi, M. Stuschke, J. Lopez-Torrecilla et al., Radiother. Oncol. 44, 111 (1997) CrossRefGoogle Scholar
  8. 8.
    M. Saunders, A.M. Rojas, S. Dische, Clin. Oncol. (R. Coll. Radiol.) 20, 127 (2008) Google Scholar
  9. 9.
    M. Stuschke, H.D. Thames, Int. J. Radiat. Oncol. Biol. Phys. 37, 259 (1997) Google Scholar
  10. 10.
    M.R. Owen, T. Alarcn, P.K. Maini, H.M. Byrne, J. Math. Biol. 58, 689 (2009) MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Ribba, T. Colin, S. Schnell, Theor. Biol. Med. Model. 3, 7 (2006) CrossRefGoogle Scholar
  12. 12.
    T. Roose, S.J. Chapman, P.K. Maini, SIAM Rev. 49, 179 (2007) zbMATHMathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D. Drasdo, Polymer and cell dynamics: multiscale modeling and numerical simulations, On selected individual-based approaches to the dynamics in multicellular systems (Birkhäuser, Basel, 2003), pp. 169–204 Google Scholar
  14. 14.
    G. Schaller, M. Meyer-Hermann, Phys. Rev. E 71, 051910 (2005) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    J. Galle, G. Aust, G. Schaller, T. Beyer, D. Drasdo, Cytometry Part A 69, 704 (2006) CrossRefGoogle Scholar
  16. 16.
    M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997) CrossRefGoogle Scholar
  17. 17.
    M. Kremer, W.K. Weyrather, M. Scholz, Techn. Canc. Res. Treat. 2, 427 (2003) Google Scholar
  18. 18.
    E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Ion-induced electron production in tissue-like media and dna damage mechanisms (2008) Google Scholar
  19. 19.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, 1994) Google Scholar
  20. 20.
    T. Lecuit, P.F. Lenne, Nat. Rev. Mol. Cell. Biol. 8, 633 (2007), ISSN 1471-0072 CrossRefGoogle Scholar
  21. 21.
    T. Beyer, G. Schaller, A. Deutsch, M. Meyer-Hermann, Comput. Phys. Commun. 172, 86 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    M. Meyer-Hermann, Curr. Top. Dev. Biol. 81, 373 (2008) CrossRefGoogle Scholar
  23. 23.
    K.L. Johnson, K. Kendall, A.D. Roberts, Proc. Roy. Soc. Lond. A 324, 301 (1971) ADSCrossRefGoogle Scholar
  24. 24.
    Y.S. Chu, S. Dufour, J.P. Thiery, E. Perez, F. Pincet, Phys. Rev. Lett. 94, 028102 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    P. Canadas, V.M. Laurent, C. Oddou, D. Isabey, S. Wendling, J. Theor. Biol. 218, 155 (2002) MathSciNetCrossRefGoogle Scholar
  26. 26.
    J.C. Dallon, H.G. Othmer, J. Theor. Biol. 231, 203 (2004) MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Schaller, M. Meyer-Hermann, Phil. Trans. R. Soc. A 364, 1443 (2006) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    T. Beyer, M. Meyer-Hermann, Phys. Rev. E 76, 021929 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    G.D. Wilson, Cancer Metastasis Rev. 23, 209 (2004) CrossRefGoogle Scholar
  30. 30.
    J. Denekamp, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49, 357 (1986) CrossRefGoogle Scholar
  31. 31.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland, 2002), ISBN 0815332181 Google Scholar
  32. 32.
    R.A. Weinberg, The Biology of Cancer (Garland Science, 2006) Google Scholar
  33. 33.
    G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Nat. Biotech. 15, 778 (1997) CrossRefGoogle Scholar
  34. 34.
    G. Cheng, J. Tse, R.K. Jain, L.L. Munn, PLoS One 4, e4632 (2009) Google Scholar
  35. 35.
    D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000) CrossRefGoogle Scholar
  36. 36.
    V.D. Gordon, M.T. Valentine, M.L. Gardel, D. Andor-Ard, S. Dennison, A.A. Bogdanov, D.A. Weitz, T.S. Deisboeck, Exp. Cell Res. 289, 58 (2003) CrossRefGoogle Scholar
  37. 37.
    T. Bauer, N. Motosugi, K. Miura, H. Sabe, T. Hiiragi, Genesis. 46, 152 (2008) CrossRefGoogle Scholar
  38. 38.
    D. Schardt, Nucl. Phys. A 787, 633 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    N. Saito, C. Bert, N. Chaudhri, A. Gemmel, D. Schardt, M. Durante, E. Rietzel, Phys. Med. Biol. 54, 4849 (2009) CrossRefGoogle Scholar
  40. 40.
    K. Parodi, N. Saito, N. Chaudhri, C. Richter, M. Durante, W. Enghardt, E. Rietzel, C. Bert, Med. Phys. 36, 4230 (2009) CrossRefGoogle Scholar
  41. 41.
    J. Topsch, M. Scholz, W. Mueller-Klieser, Radiat. Res. 167, 645 (2007) CrossRefGoogle Scholar
  42. 42.
    P. Fritz, K.J. Weber, C. Frank, M. Flentje, Radiother. Oncol. 39, 73 (1996) CrossRefGoogle Scholar
  43. 43.
    W.K. Sinclair, Radiat. Res. 33, 620 (1968) CrossRefGoogle Scholar
  44. 44.
    J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 124, 516 (1985) CrossRefGoogle Scholar
  45. 45.
    S. Rockwell, Radiat. Res. 107, 375 (1986) CrossRefGoogle Scholar
  46. 46.
    H.R. Withers, J.M. Taylor, B. Maciejewski, Acta Oncol. 27, 131 (1988) CrossRefGoogle Scholar
  47. 47.
    E.I. Zacharaki, G.S. Stamatakos, K.S. Nikita, N.K. Uzunoglu, Comput. Methods Programs Biomed. 76, 193 (2004) CrossRefGoogle Scholar
  48. 48.
    J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, Biophys. J. 81, 767 (2001) CrossRefGoogle Scholar
  49. 49.
    A.J. Maniotis, C.S. Chen, D.E. Ingber, Proc. Natl. Acad. Sci. USA 94, 849 (1997) ADSCrossRefGoogle Scholar
  50. 50.
    Y.S. Chu, W.A. Thomas, O. Eder, F. Pincet, E. Perez, J.P. Thiery, S. Dufour, J. Cell Biol. 167, 1183 (2004) CrossRefGoogle Scholar
  51. 51.
    J. Galle, M. Loeffler, D. Drasdo, Biophys. J. 88, 62 (2005) ADSCrossRefGoogle Scholar
  52. 52.
    V.I. Baranov, V.M. Belichenko, C.A. Shoshenko, Microvas. Res. 60, 168 (2000) CrossRefGoogle Scholar
  53. 53.
    J. Grote, R. Susskind, P. Vaupel, Pflugers Arch. 372, 37 (1977) CrossRefGoogle Scholar
  54. 54.
    E.K. Rofstad, K. Eide, R. Skøyum, M.E. Hystad, H. Lyng, Int. J. Radiat. Biol. 70, 241 (1996) CrossRefGoogle Scholar
  55. 55.
    J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, Can. Res. 48, 3905 (1988) Google Scholar
  56. 56.
    J. Landry, J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 106, 23 (1981) CrossRefGoogle Scholar
  57. 57.
    J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, J. Cell. Physiol. 151, 386 (1992) CrossRefGoogle Scholar
  58. 58.
    J.P. Wehrle, C.E. Ng, K.A. McGovern, N.R. Aiken, D.C. Shungu, E.M. Chance, J.D. Glickson, NMR Biomed. 13, 349 (2000) CrossRefGoogle Scholar
  59. 59.
    L.A. Kunz-Schughart, J. Doetsch, W. Mueller-Klieser, K. Groebe, Am. J. Physiol. Cell Physiol. 278, 765 (2000) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  2. 2.Institute for Theoretical Physics, Goethe-University FrankfurtFrankfurt am MainGermany
  3. 3.Helmholtz Centre for Infection Research, Inhoffenstr. 7BraunschweigGermany

Personalised recommendations