Advertisement

The European Physical Journal D

, Volume 59, Issue 3, pp 479–485 | Cite as

Non-Markovian entanglement dynamics in coupled superconducting qubit systems

  • W. Cui
  • Z. R. XiEmail author
  • Y. Pan
Quantum Information

Abstract.

We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio r \(\omega_c\)/\(\omega_0\) between the reservoir cutoff frequency \(\omega_c\) and the system oscillator frequency \(\omega_0\),
and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio r and the thermal energy k BT , the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and the ESD time can be prolonged by adjusting the temperature and the superconducting phases \(\Phi_k\) which split the energy levels.

Keywords

Entangle State Master Equation Josephson Junction Entanglement Dynamic Open Quantum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to Experiment, Revised and Enlarged, 2nd edn. (Wiley, Berlin, Germany 2008) Google Scholar
  2. 2.
    M.L. Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, England, 2006) Google Scholar
  3. 3.
    N.D. Mermin, Quantum Computer Science: An Introduction (Cornell University, New York, 2007) Google Scholar
  4. 4.
    M.A. Rowe et al., Nature 409, 791 (2001) CrossRefGoogle Scholar
  5. 5.
    I. Buluta, F. Nori, Science 326, 108 (2009) CrossRefADSGoogle Scholar
  6. 6.
    C.H. Bennett, Phys. Scr. T 76, 210 (1998) CrossRefADSGoogle Scholar
  7. 7.
    A. Sorensen, L. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001) CrossRefADSGoogle Scholar
  8. 8.
    L. Amico, R. Fazio, V. Vedral, Rev. Mod. Phys. 80, 517 (2008) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    J.Q. You, F. Nori, Phys. Today 58, 42 (2005) CrossRefGoogle Scholar
  11. 11.
    A.J. Berkley, H. Xu, R.C. Ramos, M.A. Gubrud, F.W. Strauch, P.R. Johnson, J.R. Anderson, A.J. Dragt, C.J. Lobb, F.C. Wellstood, Science 300, 1548 (2003) CrossRefADSGoogle Scholar
  12. 12.
    R. McDermott, R.W. Simmonds, M. Steffen, K.B. Cooper, K. Cicak, K.D. Osborn, Seongshik Oh, D.P. Pappas, J.M. Martinis, Science 307, 1299 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Y.X. Liu, L.F. Wei, J.S. Tsai, F. Nori, Phys. Rev. Lett. 96, 067003 (2006) CrossRefADSGoogle Scholar
  14. 14.
    I.T. Dimitris, S. Ashhab, F. Nori, New J. Phys. 10, 113020 (2008) CrossRefGoogle Scholar
  15. 15.
    L.F. Wei, J.R. Johansson, L.X. Cen, S. Ashhab, F. Nori, Phys. Rev. Lett. 100, 113601 (2008) CrossRefADSGoogle Scholar
  16. 16.
    A. Schulz, A. Zazunov, R. Egger, Phys. Rev. B 79, 184517 (2009) CrossRefADSGoogle Scholar
  17. 17.
    J.Q. You, J.S. Tsai, F. Nori, Phys. Rev. Lett. 89, 197902 (2002) CrossRefADSGoogle Scholar
  18. 18.
    T. Yamamoto, M. Watanabe, J.Q. You, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, F. Nori, J.S. Tsai, Phys. Rev. B 77, 064505 (2008) CrossRefADSGoogle Scholar
  19. 19.
    T. Hime, P.A. Reichardt, B.L.T. Plourde, T.L. Robertson, C.E. Wu, A.V. Ustinov, J. Clarke, Science 314, 1427 (2006) CrossRefADSGoogle Scholar
  20. 20.
    A. Ashhab, A.O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P.C. de Groot, C.J.P.M. Harmans, J.E. Mooij, F. Nori, Phys. Rev. B 77, 014510 (2008) CrossRefADSGoogle Scholar
  21. 21.
    M. Steffen, M. Ansmann, R.C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Science 313, 1423 (2006) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Kärber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005) CrossRefADSGoogle Scholar
  23. 23.
    C.Y. Lu, X.Q. Zhou, O. Gühne, W.B. Gao, J. Zhang, Z.S. Yuan, A. Goebel, T. Yang, J.W. Pan, Nature Phys. 3, 91 (2007) CrossRefADSGoogle Scholar
  24. 24.
    R. McDermott, IEEE Trans. Appl. Supercond. 19, 2 (2009) CrossRefADSGoogle Scholar
  25. 25.
    A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Phys. Rev. Lett. 97, 077001 (2006) CrossRefADSGoogle Scholar
  26. 26.
    S. Ashhab, J.R. Johansson, F. Nori, Physica C 444, 45 (2006) CrossRefADSGoogle Scholar
  27. 27.
    S. Ashhab, J.R. Johansson, F. Nori, New J. Phys. 8, 103 (2006) CrossRefADSGoogle Scholar
  28. 28.
    M.B. Mensky, R. Onofrio, C. Presilla, Phys. Rev. Lett. 70, 2825 (1993) CrossRefADSGoogle Scholar
  29. 29.
    C. Presilla, R. Onofrio, U. Tambini, Ann. Phys. 248, 95 (1996) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002) Google Scholar
  31. 31.
    L. Chirolli, G. Burkard, Adv. Phys. 57, 225 (2008) CrossRefADSGoogle Scholar
  32. 32.
    J.S. Zhang, J.B. Xu, Q. Lin, Eur. Phys. J. D 51, 283 (2009) CrossRefADSGoogle Scholar
  33. 33.
    W. Cui, Z. Xi, Y. Pan, Phys. Rev. A 77, 032117 (2008) CrossRefADSGoogle Scholar
  34. 34.
    Y.J. Zhang, Z.X. Man, Y.J. Xia, Eur. Phys. J. D 55, 173 (2009) CrossRefADSGoogle Scholar
  35. 35.
    L. Diósi, Phys. Rev. Lett. 100, 080401 (2008) CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    J. Piilo, S. Maniscalco, K. Härkönen, K.A. Suominen, Phys. Rev. Lett. 100, 180402 (2008) CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    H.M. Wiseman, J.M. Gambetta, Phys. Rev. Lett. 101, 140401 (2008) CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    H.P. Breuer, B. Vacchini, Phys. Rev. Lett. 101, 140402 (2008) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    M.M. Wolf, J. Eisert, T.S. Cubitt, J.I. Cirac, Phys. Rev. Lett. 101, 150402 (2008) CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    G. Burkard, Phys. Rev. B 79, 125317 (2009) CrossRefADSGoogle Scholar
  41. 41.
    H.P. Breuer, J. Piilo, Europhys. Lett. 85, 50004 (2009) CrossRefADSGoogle Scholar
  42. 42.
    J. Piilo, K. Härkönen, S. Maniscalco, K.A. Suominen, Phys. Rev. A 79, 062112 (2009) CrossRefADSGoogle Scholar
  43. 43.
    J.Q. You, J.S. Tsai, F. Nori, Phys. Rev. B 68, 024510 (2003) CrossRefADSGoogle Scholar
  44. 44.
    J.Q. You, F. Nori, Phys. Rev. B 68, 064509 (2003) CrossRefADSGoogle Scholar
  45. 45.
    J.Q. You, Y. Nakamura, F. Nori, Phys. Rev. B 71, 024532 (2005) CrossRefADSGoogle Scholar
  46. 46.
    L.F. Wei, Y.X. Liu, F. Nori, Phys. Rev. B 72, 104516 (2005) CrossRefADSGoogle Scholar
  47. 47.
    L.F. Wei, Y.X. Liu, M.J. Storcz, F. Nori, Phys. Rev. A 73, 052307 (2006) CrossRefADSGoogle Scholar
  48. 48.
    L.F. Wei, Y.X. Liu, F. Nori, Phys. Rev. Lett. 96, 246803 (2006) CrossRefADSGoogle Scholar
  49. 49.
    S. Ashhab, S. Matsuo, N. Hatakenaka, F. Nori, Phys. Rev. B 74, 184504 (2006) CrossRefADSGoogle Scholar
  50. 50.
    S. Ashhab, F. Nori, Phys. Rev. B 76, 132513 (2007) CrossRefADSGoogle Scholar
  51. 51.
    Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Phys. Rev. B 76, 144518 (2007) CrossRefADSGoogle Scholar
  52. 52.
    L.F. Wei, Y.X. Liu, F. Nori, Europhys. Lett. 67, 10 (2004) CrossRefGoogle Scholar
  53. 53.
    J. Zhang, Y.X. Liu, F. Nori, Phys. Rev. A 79, 052102 (2009) CrossRefADSGoogle Scholar
  54. 54.
    J. Zhang, Y.X. Liu, C.W. Li, T.J. Tarn, F. Nori, Phys. Rev. A 79, 052308 (2009) CrossRefADSGoogle Scholar
  55. 55.
    W. Cui, Z. Xi, Y. Pan, J. Phys. A: Math. Theor. 42, 155303 (2009) CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    W. Cui, Z. Xi, Y. Pan, J. Phys. A: Math. Theor. 42, 025303 (2009) CrossRefMathSciNetADSGoogle Scholar
  57. 57.
    F.G.S.L. Brandão, M.B. Plenio, Nature Phys. 4, 873 (2008) CrossRefADSGoogle Scholar
  58. 58.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  59. 59.
    K. Maruyama, T. Iitaka, F. Nori, Phys. Rev. A 75, 012325 (2007) CrossRefADSGoogle Scholar
  60. 60.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004) CrossRefADSGoogle Scholar
  61. 61.
    T. Yu, J.H. Eberly, Opt. Commun. 264, 393 (2006) CrossRefADSGoogle Scholar
  62. 62.
    T. Yu, J.H. Eberly, Science 323, 598 (2009) CrossRefMathSciNetADSGoogle Scholar
  63. 63.
    J.Q. You, X. Hu, S. Ashhab, F. Nori, Phys. Rev. B 75, R140515 (2007) CrossRefADSGoogle Scholar
  64. 64.
    X. Wang, A. Miranowicz, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 81, 022106 (2010) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations