Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 203–208 | Cite as

Energy deposition model for I-125 photon radiation in water

  • M. C. Fuss
  • A. Muñoz
  • J. C. Oller
  • F. Blanco
  • P. Limão-Vieira
  • A. Williart
  • C. Huerga
  • M. Téllez
  • G. GarcíaEmail author
Topical issue on Molecular level assessments of radiation biodamage

Abstract

In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide.

Keywords

Energy Deposition Compton Scattering Photon Radiation Electron Track Single Collision Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefADSGoogle Scholar
  2. 2.
    M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, J. Am. Chem. Soc. 125, 4467 (2003) CrossRefGoogle Scholar
  3. 3.
    G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 188104 (2003) CrossRefADSGoogle Scholar
  4. 4.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004) CrossRefADSGoogle Scholar
  5. 5.
    A. Muñoz, J.C. Oller, F. Blanco, J.D. Gorfinkiel, P. Limão-Vieira, G. García, Phys. Rev. A 76, 052707 (2007) CrossRefADSGoogle Scholar
  6. 6.
    A. Muñoz, F. Blanco, G. Garcia, P.A. Thorn, M.J. Brunger, J.P. Sullivan, S.J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008) CrossRefADSGoogle Scholar
  7. 7.
    A. Muñoz, J.C. Oller, F. Blanco, J.D. Gorfinkiel, P. Limão-Vieira, A. Maira-Vidal, M.J.G. Borge, O. Tengbland, C. Huerga, M. Téllez, G. García, J. Phys. Conf. Ser. 133, 012002 (2008) CrossRefADSGoogle Scholar
  8. 8.
    J. Baro, J. Sempau, J.M. Fernandez-Varea, F. Salvat, Nucl. Instrum. Meth. B 100, 31 (1995) CrossRefADSGoogle Scholar
  9. 9.
    A. Muñoz, J.M. Pérez, G. García, F. Blanco, Nucl. Instrum. Meth. A 536, 176 (2005) CrossRefADSGoogle Scholar
  10. 10.
    A. Muñoz, F. Blanco, J.C. Oller, J.M. Pérez, G. García, Adv. Quant. Chem. 52, 21 (2007) CrossRefGoogle Scholar
  11. 11.
    I. Kawrakow, Med. Phys. 27, 485 (2000) CrossRefGoogle Scholar
  12. 12.
    S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003) CrossRefADSGoogle Scholar
  13. 13.
    J.S. Hendrick, G.W. McKinney, M.L. Fensin, M.R. James, R.C. Johns, J.W. Durkee, J.P. Finch, D.B. Pelowitz, L.S. Waters, F.X. Gallmeier, MCNPX version 26D, Los Alamos National Laboratory report LA-UR-07-4137 (2007) Google Scholar
  14. 14.
    W. Friedland, P. Jacob, H.G. Paretzke, T. Stork, Radiat. Res. 150, 170 (1998) CrossRefGoogle Scholar
  15. 15.
    W. Friedland, P. Jacob, P. Bernhardt, H.G. Paretzke, M. Dingfelder, Radiat. Res. 159, 401 (2003) CrossRefGoogle Scholar
  16. 16.
    D. Cullen, J.H. Hubbell, L. Kissel. EPDL97: The Evaluated Photon Data Library, ‘97 Version, UCRL-50400 (1997), Rev. 5, Vol. 6 Google Scholar
  17. 17.
    H. Cho, Y.S. Park, H. Tanaka, S.J. Buckman, J. Phys. B 37, 625 (2004) CrossRefADSGoogle Scholar
  18. 18.
    M.J. Rivard, B.M. Coursey, L.A. DeWerd, W.F. Hanson, M.S. Huq, G.S. Ibbott, M.G. Mitch, R. Nath, J.F. Williamson, Med. Phys. 31, 633 (2004) CrossRefGoogle Scholar
  19. 19.
    B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. C. Fuss
    • 1
  • A. Muñoz
    • 2
  • J. C. Oller
    • 2
  • F. Blanco
    • 3
  • P. Limão-Vieira
    • 4
  • A. Williart
    • 5
  • C. Huerga
    • 6
  • M. Téllez
    • 6
  • G. García
    • 1
    • 5
    Email author
  1. 1.Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)MadridSpain
  3. 3.Departamento de Física Atómica, Molecular y NuclearUniversidad Complutense de MadridMadridSpain
  4. 4.Laboratório de Colisões Atómicas e Moleculares, Departamento de Física, CEFITECFCT-Universidade Nova de LisboaCaparicaPortugal
  5. 5.Departamento de Física de los MaterialesUniversidad Nacional de Educación a DistanciaMadridSpain
  6. 6.Hospital Universitario La PazMadridSpain

Personalised recommendations